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Trajectory Vorticity -
Computation and Visualization of Rotational

Trajectory Behavior in an Objective Way
Anke Friederici, Holger Theisel, and Tobias Günther

Abstract—Trajectory data consisting of a low number of smooth
parametric curves are standard data sets in visualization. For a
visual analysis, not only the behavior of the individual trajectories
is of interest but also the relation of the trajectories to each other.
Moving objects represented by the trajectories may rotate around
each other or around a moving center. We present an approach
to compute and visually analyze such rotational behavior in
an objective way. We introduce trajectory vorticity (TRV), a
measure of rotational behavior of a low number of trajectories.
We show that it is objective and that it can be introduced in two
independent ways: by approaches for unsteadiness minimization
and by considering the relative spin tensor. We compare TRV
against single-trajectory methods and apply it to a number of
constructed and real trajectory data sets, including drifting buoys
in the Atlantic, midge swarm tracking data, pedestrian tracking
data, pigeon flocks, and a simulated vortex street.

Trajectory data is a standard type of data to be analyzed in
visualization. Trajectory data describing the dynamic behavior
of moving objects consists of a finite number of 2D or 3D
parametric curves where the parameter is usually the time
of observation. Trajectory data arises in many application
areas. In flow observations, moving objects are tracked over
time by sensors, e.g., observational drifters [30] or balloons.
In fluid flows, moving objects are observed by particle
tracking velocimetry. To observe animal behavior, animals
are either equipped with sensors, or their trajectories are
observed by optical methods. Examples are trajectories of insect
swarms [45] and bird flocks [41]. Trajectories of humans are
extracted from crowd simulations or observations [11], [44].
In swarm simulations, individual agents can be tracked. Since
moving objects may interact with each other or follow common
underlying patterns, a visual analysis should not only focus on
representing the paths of individual objects but also show the
relation or a common behavior of multiple objects. In general,
two kinds of common behavior of moving objects are possible:
(1) Hyperbolic (stretching) behavior: the objects may attract or
repel each other, or may get attracted or repelled by a common
center. In addition, a saddle-like behavior of simultaneous
attraction and repelling is possible. (2) Elliptic (rotational)
behavior: the objects may rotate around each other or around
a (possibly unknown) rotation center/axis. In this paper, we
present an approach to visually analyze the rotational behavior
of moving objects. We introduce Trajectory Vorticity (TRV),
the first approach to visually analyze rotational behavior of
trajectories in an objective way. Given a (finite and potentially
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low) number of trajectories, TRV is a Lagrangian measure
indicating whether, and to which degree, objects rotate around
each other or a common center.

For TRV, we require objectivity, i.e., independence from the
observation frame. While objectivity is a common and obvious
demand, it is in fact a rather strong condition, especially when
checking the rotation/swirling behavior of moving objects:
objective measures should give the same result even under
a moving and/or rotating reference frame. In other words,
while the inputs will differ when taken from a fixed position,
an observer travelling e.g. with one of the moving objects,
or under a Euclidean motion, the final output of objective
methods must remain the same. In fact, the most challenging
part for objective rotation measures is to distinguish between
swirling around a common center and a rotating movement
of the coordinate system. Imagine the trajectories describe a
swarm of birds. Then a static observer outside the swarm should
come to the same conclusion about rotational behavior as an
observer moving with one of the birds. We consider objectivity
as a common and natural requirement for the analysis of a
rotational measure.

Given a set of trajectories, we are not only interested in a
common rotation of all trajectories but also in finding subsets
of trajectories that reveal their own rotational patterns. Given
an initial set of trajectories, we search suitable subsets of them
revealing a common rotational behavior. It is important to
mention that TRV indicates if a set of trajectories reveals a
common rotational behavior, and if so, how strong it is. It
does not give any information on the reason for the rotation
behavior. In this paper, we make the following contributions:

• We introduce a new Lagrangian measure TRV (trajectory
vorticity), which measures rotational behavior based on at
least three trajectories (in 2D) or four trajectories (in 3D),
respectively.

• We show that TRV can be derived in two independent ways:
by unsteadiness minimization approaches, or by considering
the relative spin tensor in a local best-fitting linear time-
dependent vector field.

• We prove that TRV is objective.
• We apply the new measure TRV to a number of sparse

trajectory data sets, including drifting buoys in the Atlantic,
midge tracking data, pedestrian tracking data, pigeon flocks,
and trajectories in a simulated vortex street.
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I. BASIC CONCEPTS AND RELATED WORK

A. Visualization of trajectory data

Trajectory data can stem from a wide array of sources, with
differing degrees of complexity. While we focus on curves
in 2D or 3D space without any additional data attached to
it, a multitude of visualization methods exists for both higher
dimensional spaces as well as multivariate data attached to each
sample, see for example He et al. [26]. In low dimensional
spaces, a direct spatial mapping is possible through lines or
tubes, where additional properties can be encoded by mapping
them to color or width [6], [25]. The time aspect of the data
can be visualized in different ways. For 2D data, curves can
be fully represented in a space-time cube [49], where time
is mapped to a third dimension orthogonal to the spatial
plane. An example can be seen in Figure 3. A multitude
of interactions on such space-time cubes are possible [2],
including among others slicing to focus on an individual time
frame, as well as collapsing it along the time axis. For more
sparse data, collapsing time that way is a valid and simple
solution, see for example Figure 5 and 6. When data sets
become too dense to focus on individual curves, methods such
as heat maps [40], space-time density mapping [7], [27], or
visibility optimization [15], [3] may be employed. To assess
the expression of multiple fields along trajectories, time activity
curves have been used to analyze trends [31], [32].

B. Objectivity

Objectivity, a concept from continuum mechanics, refers to
the invariance of a measure under a moving reference system.
Let s(x, t), w(x, t), T(x, t) be a time-dependent scalar field,
vector field and tensor field, respectively. Further, let s̃(x̃, t),
w̃(x̃, t), T̃(x̃, t) be their observations under the Euclidean
frame change

x = Q(t) x̃+ b(t) (1)

where Q = Q(t) is a time-dependent rotation tensor and b(t) is
a time-dependent translation vector. Then s,w,T are objective
if the following conditions hold, cf. Truesdell and Noll [50]:

s̃(x̃, t) = s(x, t) (2)

w̃(x̃, t) = QT w(x, t) (3)

T̃(x̃, t) = QT T(x, t)Q. (4)

Since its introduction to flow analysis [1], objectivity became a
common demand for newly-introduced flow measures [19], [5].
In fact, there are a variety of objective flow measures focusing
on hyperbolic (stretching) properties, such as FTLE [43].
Also, objective flow measures focusing on elliptic (rotational)
behavior have been introduced and can roughly be divided into
three classes: (1) Replacing the spin tensor by the relative spin
tensor [9], [1]: These approaches use the fact that the rate-of-
strain-tensor is objective and consider the spin tensor (vorticity)
in the local frame given by the eigenbasis of the rate-of-strain
tensor. (2) Replacing the spin tensor by the spin deviation tensor
[23], [29], based on the fact that the difference of two spin
tensors at different locations but the same time is objective. (3)
Finding optimal reference frames minimizing the unsteadiness

of the observed flow: introduced by Günther et al. [14], this
created a number of follow-up work [16], [18], [4], [17], [37],
[52]. Recently, the objectivity of unsteadiness minimization
approaches has been questioned [20] but confirmed [48].

All approaches mentioned above have in common that they
rely on an underlying velocity field and its derivatives. For
our problem, where only a few trajectories are available, no
underlying velocity field exists, and thus, previous approaches
are not applicable.

C. Hyperbolic measures for finite sets of trajectories

If the input is not a continuous vector field but only a few tra-
jectories, several methods exist to analyze hyperbolic behavior.
Relative dispersion (RD) was introduced by Provenzale [36] and
further analyzed by Haller and Yuan [24] and Haller [21]. Given
are two distinct C1 continuous n-dimensional (n = 2, 3) tra-
jectories x1(t),x2(t) along with their derivatives ẋ1(t), ẋ2(t).
Defining the local relative dispersion

rd = rdx1(t),x2(t)(t) =
(x2 − x1)

T (ẋ2 − ẋ1)

(x2 − x1)T (x2 − x1)
, (5)

one gets the relative dispersion by integrating rd along
trajectories:

RDt0,tN
x1(t),x2(t)

=

∫ tN

t0

rd dt = ln
|x2(tN )− x1(tN )|
|x2(t0)− x1(t0)|

. (6)

Intuitively, RD observes the change of Euclidean distance of
two objects over time. Note that RD is objective [21]. Extending
RD to more than two trajectories is straightforward.

Haller et al. [21] introduced measures for stretching based
on single trajectories only: the extended trajectory stretching
exponents TSE and TSE. Given is a C2 continuous trajectory
x(t) for t ∈ [t0, tN ] with first and second derivatives ẋ(t), ẍ(t).
Then a local stretching measure can be defined as

tse = tsex(t)(t) =
ẋT ẍ

ẋT ẋ
(7)

from which the Lagrangian measures TSE and TSE are
computed by integrating tse along the trajectory:

TSEt0,tN
x(t) =

1

∆t

∫ tN

t0

tse dt =
1

∆t
ln

|ẋ(tN )|
|ẋ(t0)|

(8)

TSE
t0,tN
x(t) =

1

∆t

∫ tN

t0

|tse| dt ≈ 1

∆t

N−1∑
i=0

∣∣∣∣ln |ẋ(ti+1)|
|ẋ(ti)|

∣∣∣∣ (9)

with ∆t = tN − t0. The discretization in Eq. (9) samples x(t)
at N + 1 time steps t0 < t1 < ... < tN .

D. Rotational measures for finite sets of trajectories

Haller et al. [21] also introduced a rotational measure that
is based on a single trajectory only: the extended trajectory
angular velocity TRA and TRA. For defining TRA, the n-
dimensional matrix function

tra = trax(t)(t) =
ẋ ẍT − ẍ ẋT

ẋT ẋ
(10)
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can be introduced to describe the local angular velocity. tra is
an anti-symmetric matrix, from which one gets the following
Lagrangian measures by integration along the trajectory

TRAt0,tN
x(t) =

1

∆t

√
2

2

∣∣∣∣∫ tN

t0

tra dt

∣∣∣∣
Fr

(11)

=
1

∆t
cos−1 ẋ(t0)

T ẋ(tN )

|ẋ(t0)||ẋ(tN )|
(12)

TRA
t0,tN
x(t) =

1

∆t

√
2

2

∫ tN

t0

|tra|Fr dt (13)

≈ 1

∆t

N−1∑
i=0

cos−1 ẋ(ti)
T ẋ(ti+1)

|ẋ(ti)||ẋ(ti+1)|
(14)

where Fr denotes the Frobenius norm of a matrix.
Objectivity of single trajectory methods: Single-trajectory

measures like TSE and TRA are attractive because they need
minimal information to infer the hyperbolic or rotational
behavior. Obviously, single-trajectory measures cannot be
objective in the Euclidean observation space because one may
think of a reference system moving with the trajectory, making
each trajectory zero [21]. Because of this, Haller et al. [21]
considered objectivity in an extended phase space along with an
approach to non-dimensionalization. Further, [21] introduced
the concept of quasi-objectivity: contrary to classical objectivity
where a scalar value must be invariant under arbitrary time-
dependent Euclidian transformations, for quasi-objectivity a
condition (A) is introduced, and invariance is only demanded
for those fulfilling (A). In fact, Haller et al. [21] claimed that
TSE and TSE are objective in the extended phase space, and
that TRA and TRA are quasi-objective in the extended phase
space under a certain condition put to the average vorticity
in a certain neighborhood of the trajectory. Theisel et al. [46]
showed that the claims about objectivity in the extended phase
space in [21] are incorrect. As a reaction, in an erratum Haller
et al. [22] gave up the idea of considering extended phase
space and non-dimensionalization. Instead, a new condition for
quasi-objectivity was introduced, and theorems about the quasi-
objectivity of TSE and TRA were formulated. By showing
a simple counter-example, Theisel et al. [47] claim that the
corrected theorems in [22] are still incorrect.

II. TRAJECTORY VORTICITY

In the following, we introduce our new objective measure of
rotating object behavior that is based on very few trajectories
only, Trajectory Vorticity (TRV). The input of TRV is a number
of (2D or 3D) trajectories. We begin with describing the main
idea of TRV in Section II-A, followed by a formal definition
and an algorithm for its computation in Sections II-A–II-D.
Section II-E collects properties of the measure, while Section
II-F shows that the measure can be computed in an alternative
way: by minimizing unsteadiness of a local vector field.

A. Main idea of TRV

In nD space (n = 2, 3), we consider m distinct C2 con-
tinuous trajectories x1 = x1(t), x2 = x2(t),..., xm = xm(t)
for t ∈ [t0, tN ]. In addition, we consider their first derivatives

ẋ1, ẋ2, ..., ẋm, and second derivatives ẍ1, ẍ2, ..., ẍm. Note that
we require m ≥ 3 in 2D and m ≥ 4 in 3D. We introduce an
n-dimensional anti-symmetric time-dependent matrix function

trv = trvx1,...,xm(t) (15)

that describes the strength of the rotational behavior of the
trajectories x1, ...,xm at the time t: the more rotational
behavior the trajectories x1, ...,xm exhibit at time t, the larger
is trvx1,...,xm

(t).
The trajectories xi may contain noise and uncertainty

that also influence the computation of trv. While for some
configurations of the trajectories the computation of trv is
stable (i.e., small changes in xi result in small changes in trv),
for other configurations we may observe instability, i.e., small
changes in xi may result in large changes in trv. Clearly, for
a final consideration of rotational behavior, stable information
should be preferred over unstable ones. To cope with this, we
introduce a non-negative time-dependent scalar function

s = sx1,...,xm
(t) (16)

that denotes the computational stability of trv at the time t.
In fact, s drops to 0 if trv cannot be computed locally.

Based on trv and s, we define the Lagrangian Trajectory
Vorticity TRV by a weighted integration of trv as

TRVt0,tN
x1,...,xm

=

√
2

2

∣∣∣∫ tN
t0

s trv dt
∣∣∣
Fr∫ tN

t0
s dt

(17)

TRV
t0,tN
x1,...,xm

=

√
2

2

∫ tN
t0

|s trv|Fr dt∫ tN
t0

s dt
(18)

with Fr denoting the Frobenius norm of a matrix. The
computation of TRV and TRV requires a non-zero denominator
in (17) and (18), i.e., the stability s must not vanish everywhere.
Note that a locally vanishing s is not a problem as long as it
does not vanish over the entire temporal domain. Both (17)
and (18) describe a weighted integration of trv, resulting in
a convex combination of the trv values over time. Thus, not
the stability s itself influences the final TRV and TRV but the
ratio of s to the average s over the whole temporal domain.
In fact, assuming a discretization of (17) similar to (14) gives

TRV =

√
2

2

∣∣∣∣∣
N∑
i=0

wi trvi

∣∣∣∣∣
Fr

, TRV =

√
2

2

N∑
i=0

wi |trvi|Fr

(19)
with wi =

si∑N
j=0 sj

and si = s
(
N−i
N t0 +

i
N tN

)
and therefore

N∑
i=0

wi = 1. (20)

With TRV, clockwise and counterclockwise rotations cancel
each other out, while with TRV their norm is accumulated. We
offer both since the right choice is application-dependent, e.g.,
based on noise sensitivity. For trajectories with homogeneous
rotation behavior, TRV and TRV give similar results.
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In particular, we mention two special cases. If s is constant
over time (i.e., s(t) = s > 0), Eqs. (17) and (18) simplify to

TRV =
1

∆t

√
2

2

∣∣∣∣∫ tN

t0

trv dt

∣∣∣∣
Fr

, TRV =
1

∆t

√
2

2

∫ tN

t0

|trv|Fr dt

(21)

which are independent of s. Further, if trv is constant over
time, then Eqs. (17) and (18) simplify to

TRV = TRV =

√
2

2
|trv|Fr , (22)

i.e., TRV and TRV are independent of s(t), as well.

B. Definition of trv
To define the local measure trv, we consider a best-fitting

spatially linear time-dependent velocity field

v = vx1,...,xm
(x, t) = Jx1,...,xm

(t) x+ ax1,...,xm
(t) (23)

where J = Jx1,...,xm
(t) is a time-dependent Jacobian matrix

and a = ax1,...,xm(t) is a time-dependent vector. In fact, we
search J(t),a(t) such that all trajectories x1(t), ..,xm(t) are
as close as possible to pathlines of v, i.e., J,a solve:

m∑
i=1

∥ẋi(t)− v(xi, t)∥2 → min . (24)

In fact, for n = 2 and m = 3, v can be chosen such that all
trajectories are pathlines of v. The same holds for n = 3 and
m = 4. To obtain an objective measure of rotation, we then
follow Drouot and Lucius [9] and Astarita [1] and observe the
spin tensor in the frame given by the eigenvectors of the rate-
of-strain tensor, which is objective. We obtain the rate-of-strain
tensor S and the spin tensor W from J = S+W via:

S =
J+ JT

2
, W =

J− JT

2
. (25)

From this, we consider E = E(t) to be the rotation matrix
containing the (normalized) eigenvectors of S as columns, and
Ė = Ė(t) = dE

d t is its time-derivative. Removing the strain
rotation rate tensor Ws, which contains the rotation of the
chosen eigenvector basis

Ws = −EĖT, (26)

we compute trv as the relative spin tensor Wr [9], [1] by

trvx1,...,xm
(t) = Wr = W −Ws. (27)

C. Computation of trv
While Section II-B gives a complete definition of trv, it

is not feasible yet for direct computation as its formulation
contains a minimizer (24) and the derivative of a rotation
matrix (26). In this section, we provide a complete algorithm
to compute trv, including explicit solutions of v and Ws. For
this, we introduce the ((n+ 1)×m) time-dependent matrices

X = X(t) =

(
x1 x2 ... xm

1 1 ... 1

)
(28)

Ẋ = Ẋ(t) =

(
ẋ1 ẋ2 ... ẋm

0 0 ... 0

)
(29)

Ẍ = Ẍ(t) =

(
ẍ1 ẍ2 ... ẍm

0 0 ... 0

)
(30)

which stack the position xi, velocity ẋi, and acceleration ẍi

at a specific time t from all considered trajectories. In order to
fit a linear vector field in the form of (23), we first compute

H = H(t) = Ẋ X−1, Ḣ = Ḣ(t) = (Ẍ−HẊ) X−1. (31)

Note that for m = n+1 (i.e., X is a quadratic matrix), X−1 is
the usual matrix inverse. For m > n+1, X−1 in (31) denotes
the right Moore-Penrose pseudo-inverse XT(XXT)−1 instead
of the matrix inverse. From (31), we get the best-fitting velocity
field in (23) by(

J(t) a(t)
0T 0

)
= H(t) ,

(
J̇(t) ȧ(t)
0T 0

)
= Ḣ(t) (32)

with J̇ = dJ
d t . From this, strain tensor S and spin tensor W

are computed by (25), and the strain tensor time derivative
Ṡ = dS

d t is computed as

Ṡ =
J̇+ J̇T

2
. (33)

To obtain E, we compute a matrix factorization of S by

S = E S ET (34)

such that E is the rotation vector containing the eigenvectors
of S as columns, and S is a diagonal matrix. Having E, we
also transform Ṡ into the local reference system given by E:

Ṡ = ET Ṡ E. (35)

From this, we obtain the strain rotation tensor in the E frame:

Ws =

 0 −u3 [u2]
u3 0 [−u1]

[−u2] [u1] [0]

 (36)

with

([u1, u2, ]u3) =

([
Ṡ3,2

S2,2 − S3,3

,
Ṡ1,3

S3,3 − S1,1

,

]
Ṡ2,1

S1,1 − S2,2

)
(37)

where Si,j denotes the entry at [i, j] of the matrix S, and
Ṡi,j denotes the entry at [i, j] of the matrix Ṡ, respectively.
(Note that in (36), (37) content in brackets [ ] refers to
additional content present in 3D but not in 2D.) Finally, the
back transformation of Ws into the original frame gives

Ws = E Ws E
T (38)

from which the final trv is computed by (27).
D. Definition and Computation of s

The stability of the computation of trv depends on the
stability of the eigenvectors of the rate-of-strain tensor S
because the computation requires a factorization of S in (34).
If small changes in the trajectories xi lead to small changes
in the eigenvectors of S, we can expect a stable computation
of trv. Since the stability of the eigenvectors of S depends
on the (dis-)similarity of the eigenvalues of S, we define the
stability function s as

s = sx1,...,xm
(t)

= min({|S1,1− S2,2|,
[
|S2,2 − S3,3|, |S3,3 − S1,1|

]
}) (39)
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which is the minimum of the denominator(s) in Eq. (37). Note
that S1,1,S2,2

[
,S3,3

]
are the eigenvalues of S.

We remark that trv can only be computed if XXT has full
rank, see Eq. (31). If XXT has a rank deficit, then s(t) is set
to 0, making the computation of trv from Eq. (17)–(18) in
this particular time instance obsolete. This case, however, did
not occur in any application presented later in the paper.

E. Properties of trv, s, TRV

Lemma 1: Ws in (26) and (38) are identical.
This lemma tells that the computation of trv in Section II-B
corresponds to the definition of trv in Section II-A. To show
that for m = n+1 (28)-(32) and (23) give a velocity field v for
which xi(t) are pathlines, we have to show v(xi(t), t) = ẋi(t)
for i = 1, ...,m. Using (23), this can be reformulated as(

J(t) a(t)
0T 0

)(
xi(t)
1

)
=

(
ẋi(t)
0

)
(40)

with J(t) denoting the Jacobian matrix and a(t) a spatially
constant vector, see (23). Writing this for all i in a row gives
HX = Ẋ which is equivalent to (31). Further, (34)–(38) is an
equivalent formulation to (26).

Theorem 1: trvx1,...,xm
(t) is objective.

The formal proof of this theorem is in the supplementary
appendix.

Theorem 2: sx1,...,xm
(t) is objective.

This follows directly from the fact that S is objective. Since
the diagonal entries of S, namely S1,1, S2,2, and S3,3, are the
eigenvalues of S, cf. Eq. (34), the diagonal entries of S inherit
the objectivity from S.

From theorems 1 and 2 follows directly that TRV and TRV
are objective as well, since they are calculated from trv(t)
and s(t), see Eqs. (17)–(18).

F. An alternative definition of trv

Surprisingly, trv can also be obtained in a different way: by
unsteadiness minimization following Günther et al. [14]. Note
that v defined in (23) also has a spatially linear time-derivative

vt(x, t) = J̇(t) x+ ȧ(t). (41)

Observing v defined in (23) in a moving reference frame
x̃ = R(t)x + c(t) gives for the time-derivative of v in the
new reference frame [14]

ṽt = R (vt −Mu) (42)

with M = (−Jxp + vp , J , xp , I), xp =

(
0 −1
1 0

)
x, vp =(

0 −1
1 0

)
v in 2D, and M = (−JX + V , J , X , I), X =

sk(x), V = sk(v) in 3D, and u is a 6-vector in 2D and
12-vector in 3D:

u =


u1

u2

u3

u4

 =


ap(RTṘ)

RTċ

ap(RTR̈− (RTṘ)2)

−(RTc̈−RTṘRTċ)

 (43)

where ap transforms the anti-symmetric part of a matrix
to a scalar/vector: ap(M) = 1

2 (M1,2 − M2,1) in 2D and
ap(M) = 1

2 (M3,2 − M2,3 , M1,3 − M3,1 , M2,1 − M1,2)
T

in 3D. Conversely, sk is the inverse function transforming a
scalar/vector to an anti-symmetric matrix, here for 2D/3D:

sk(α) =

(
0 α
−α 0

)
, sk

α
β
γ

 =

 0 −γ β
γ 0 −α
−β α 0

 (44)

which is also referred to as skew-symmetric matrix [14]. Note
that due to the spatial linearity of v, both vt and ṽt are spatially
linear as well. Then, searching for an unsteadiness minimizing
observation frame results in searching an unknown u fulfilling∫

U

∥ṽt∥2 dV → min (45)

where U is a certain 2D/3D neighborhood. Note that due to
the spatial linearity of v, the problem in Eq. (45) is under-
determined in u, i.e., it has a whole family of solutions u.
However, all solutions of (45) have the same component u1,
that is, component u1 is independent of the size and location
of U . With this, we get

Ws = −sk(u1) (46)

The proof of the equivalence of (38) and (46) is a straight
computation for which we provide a Maple sheet in the
accompanying material. Eq. (46) gives that trv can be
computed by observing W in an unsteadiness minimizing
reference frame following Günther et al. [14].

Remarks: The equivalence of unsteadiness minimization
and relative spin tensor consideration shown here does not hold
for general vector fields but only for spatially linear ones as
considered here.

Another popular approach to objectivize flow measures is
to replace W by the spin-deviation tensor [23], [29]

W − 1

vol(U)

∫
U

W dV. (47)

For v defined in (23), this gives a perfectly objective but trivial
solution: it is zero everywhere.

III. SELECTION OF TRAJECTORY SUBSETS

TRV computes the rotational behavior for a set of trajectories
and a fixed time interval. For real trajectory data sets (e.g.
tracking of particles in a flow), considering all trajectories
simultaneously over the entire integration time usually does
not give a relevant result. Thus, strategies are needed to select
trajectory subsets and time spans in which TRV is calculated.

A. Choice of trajectories

To compute TRV and TRV for each trajectory in a data
set, a number of reference trajectories need to be selected for
each trajectory. While it would be possible to always consider
the whole trajectory set, this would only reveal macroscopic
behavior, while neglecting more localized rotations. Instead,
we compute a local TRV and TRV for each available trajectory.

Given is the set of M available trajectories
{x1(t), ...,xM (t)}. For each trajectory xj(t), we consider
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Fig. 1. Automatic selection of m for the CYLINDER dataset. From left to
right, the maximum number for the m nearest trajectories is increased, from
which the m with highest TRV is chosen (m ∈ {4, 6, . . . , 16}). For higher
m, the TRV value decreases, which is why results look the same for high m.

the m closest neighboring trajectories {xj1(t), ...,xjm(t)} for
which we compute TRV and TRV as

TRVj = TRVt0,tN
xj1 ,...,xjm

, TRVj = TRV
t0,tN
xj1 ,...,xjm

. (48)

In order to define the closest neighboring trajectories, we define
a distance metric between the trajectories, for which we use
the integrated, squared L2 distance:

d(x1(t),x2(t)) =

∫ tN

t0

∥x1(τ)− x2(τ)∥2 dτ. (49)

Since the trajectories are in temporal correspondence, more
general distance metrics, such as the reduced mean closest
point distance [33], are not necessary. We compute TRV and
TRV for the m closest trajectories.

User-defined m: The first option is to let the user select
the number of trajectories m. We demonstrate and discuss the
effect of m on the final result in Section V. Ideally, m should
be chosen such that the considered trajectories are part of the
same rotating phenomenon. This is not easy to select, since
multiple rotating phenomena might be in the data set that are
represented with a varying number of trajectories.

Best in range: Another option is to test different m
within a range [mmin,mmax] for each trajectory and to find
automatically the m that has the strongest vortical behavior.
The lower end of the range mmin is determined by the
dimensionality, i.e., mmin = 3 (for 2D) and mmin = 4 (for
3D). The upper end of the range is user-defined. Different
choices for mmax are examined in Fig. 1, where the TRV
value is mapped to color and line radius. Computationally, all
m in the range are easily tested by calculating the distances
between trajectories once, and by incrementally adding the
next closest trajectory to the columns of the matrices X, Ẋ, Ẍ
in Eqs. (28)–(30). It would be imaginable to discard trajectory
sets for which the stability s is close to zero over the whole
time span, although this has not occurred in our experiments.

B. Choice of time span
While the selection method outlined above works well when

the distance between curves remains relatively constant, some

data sets contain trajectories whose closest neighbors vary
noticeably over time. In these cases, choosing sets of curves
by their average distance over their full time range is not
the optimal approach. Similarly, the rotational behavior may
not remain constant over time, which is not visible by only
showing average values of TRV and TRV per line. To address
this problem, we implemented a variant of our method which
evaluates TRV and TRV for each time step t of a trajectory
instead. Then, trajectories are only considered within a time
range [t − τ, t + τ ], both for the distance calculation in the
neighborhood search as well as for the calculation of TRV and
TRV. The neighbors are again chosen by the distance metric in
Eq. (49), and may vary along the line. By repeating the process
for each vertex (at its respective time t) along the trajectory,
we are able to visualize the rotational behavior over time.

C. TRV versus field reconstruction

For each trajectory xj with j ∈ {1, ...,M}, the computation
of TRVj and TRVj requires the estimation of a best-fitting
local linear vector field vj(x, t) = vxj1

,...,xjm
(x, t) see Eq.

(23). This means that for the computation of TRV and TRV, we
need to fit M different linear vector field vj , j ∈ {1, ...,M}.
While these fields are considered as auxiliary fields for the
computation of TRV and TRV only, the question arises if we
can use them (or any other information from the trajectories
x1, ...,xM ) to reconstruct a global (non-linear) vector field v.

The reconstruction of a smooth velocity field v from a
number of trajectories is a standard sampling problem for
which a variety of solutions exist. For example, Particle
tracking velocimetry (PTV) approaches heavily rely on stable
reconstruction techniques for v, all of which require a certain
density of the trajectories to allow a stable reconstruction.
If this is available and a stable reconstruction is possible, it
is not necessary to apply single-trajectory or few-trajectory
techniques like TRV because for a reconstructed vector field
v there exist a variety of approaches to analyze rotational
behavior in an objective way, see Section I-B. TRV and TRV
are explicitly designed for cases where the available trajectories
are so sparse that a reconstruction of a smooth underlying vector
field is not possible. This also has implications on the visual
representation: TRV is not a smooth field but a single value
for each trajectory (along with its m closest neighbors). In
particular, any interpolation between single TRV values is not
allowed due to the sparsity of the samples.

IV. RESULTS

In the following, we apply our approach to a number of data
sets. We begin with a synthetic example to demonstrate the
capability of our approach to separate rotating motion from
reference frame rotation.

A. Three trajectories

We consider a simple data set consisting of three 2D
trajectories x1(t), x2(t), x3(t) constructed in the following



7

(6.75,−2.25) (3.25, 1.25) (1.25, 3.25) (−2.25, 6.75)
O

ri
gi

na
l

fr
am

e
O

pt
im

al
fr

am
e

N
on

-o
pt

im
al

fr
am

e

Fig. 2. Example of three trajectories rotating around a point on a circle
at different speeds. In the first row, the trajectories and reference frame are
shown over π/4. Removing the respective reference frame gives the second
row results, rendered over π/2: the particles are moving in an ellipse around
the origin, their speed and direction depending on the choice of q. Removing
the non-optimal reference frame (here from the first line set) leads to non-
stationary behavior, shown in the third row.

way: we start with trajectories

y1(t) =
1

10

(
3 cos(q t)
2 sin(q t)

)
(50)

y2(t) =
2

25

(
3 cos

(
q t− 2

3π
)

2 sin
(
q t− 2

3π
)) (51)

y3(t) =
3

25

(
3 cos

(
q t+ 2

3π
)

2 sin
(
q t+ 2

3π
)) , (52)

each of them describing a rotational movement around the
origin with the same angular speed q but different starting
points. For each of them, q is a measure of the strength of
rotation in the sense that q is proportional to the rotation of the
locally fitted velocity field. Hence, we observe how q can be
obtained from single or few trajectory diagnostics. We further
observe yi(t) in a moving reference system (1) resulting in

xi(t) = Q(t) yi(t) + b(t) (53)

b(t) =

(
cos(t)
sin(t)

)
, Q(t) =

(
cos(p t) − sin(p t)
sin(p t) cos(p t)

)
(54)

and i = 1, 2, 3. Then the trajectories xi(t) are the result of a
superposition of two rotational movements: a rotation of the
local reference system with angular speed p, and a rotation of
particles in this local reference system with angular speed q.

The objectivity of TRV ensures that we can separate the
movement of the reference system from the movement of the
particles in it. In fact, applying our approach to x1(t), x2(t),
x3(t), gives

trv =

(
0 − 13

12q
13
12q 0

)
, s =

5

6
|q| (55)

as shown in the supplemental Maple sheet. Since here, s is
independent of t, inserting (55) into (17) and (18) gives

TRV = TRV =
13

12
|q|. (56)

The upper row of Figure 2 shows the motion of the particles
in a fixed global reference system as well as the motion of the

TABLE I
LISTING OF TRA, TRA, TRV, AND TRV FOR THE THREE TRAJECTORIES

DATA SET AND FOUR INSTANCES FOR (p, q). NOTE THAT
TRV = TRV = 13

12
|q|, WHILE TRA AND TRA VARY FOR THE THREE

TRAJECTORIES AND ARE NOT ABLE TO RECOVER q. TRV, AND TRV ARE
EQUAL SINCE THE ROTATION DIRECTION DOES NOT CHANGE THE SIGN.

q −2.25 1.25 3.25 6.75

TRA0,2π
x1(t)

4.000 4.500 4.500 1.500

TRA0,2π
x2(t)

4.256 1.237 1.224 1.201

TRA0,2π
x3(t)

4.625 4.683 4.709 0.750

TRV0,2π
x1,x2,x3

2.438 1.354 3.521 7.312

q −2.25 1.25 3.25 6.75

TRA0,2π
x1(t)

4.386 4.500 4.500 4.381

TRA0,2π
x2(t)

4.275 3.172 3.201 4.021

TRA0,2π
x3(t)

4.861 4.683 4.709 4.827

TRV0,2π
x1,x2,x3

2.438 1.354 3.521 7.312

optimal moving reference systems. From the particle motion in
the fixed global system it is hard to infer the rotation behavior of
the trajectories around each other. This changes when switching
to the optimal local moving reference system (middle rows):
here we can clearly observe clockwise rotation in the first
column and a counterclockwise rotation of different angular
speed in the remaining columns. For reference, the lower row
shows the observation in the reference frame of the first column,
showing a non-stationary particle behavior.

It is unclear if TRA by Haller et al. [21] can be
applied to this data set, since [21] formulates conditions
about an underlying velocity field which does not exist
here. We nevertheless analyze if TRA by Haller et
al. [21] can infer the trajectory rotation strength q if the
moving observer (in particular p) is unknown. For this,
we consider four instances of xi(t) by setting (p, q) =
(6.75,−2.25), (3.25, 1.25), (1.25, 3.25), (−2.25, 6.75). Note
that for all instances we have p+ q = 4.5, resulting in visually
rather similar trajectories xi(t) (see the upper row of Figure 2
and the accompanying video), but significantly different
rotation strength q.

Table I lists numerical results for TRA (top) and TRA
(bottom) using Eqs. (11) and (13) for the three trajectories
xi(t) (lines of the table) and the four instances (p, q) (columns
of the table) at an integration time from 0 to 2π. It shows that
neither TRA nor TRA is able to infer q while q directly relates
to TRV and TRV by TRV = TRV = 13

12 |q|.

B. A counter-factual example
To construct a case where our method fails, we modify

the three trajectory example from Section IV-A by replacing
Eqs. (50)–(52) by

y1(t) =
1

4

(
cos(q t)
sin(q t)

)
(57)

y2(t) =
1

5

(
cos
(
q t− 2

3π
)

sin
(
q t− 2

3π
)) (58)

y3(t) =
3

10

(
cos
(
q t+ 2

3π
)

sin
(
q t+ 2

3π
)) (59)
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Fig. 3. Trajectory vortex measures calculated from 500 randomly placed pathlines in the CYLINDER flow for three Galilean observers, here shown in 2D
space-time. Left to right: an observer moving approximately relative to the vortices, the original observer, and an observer moving in the opposite direction. For
reference, vorticity magnitude is visualized in the first time slice. Note that the value of TRA and TRA changes for different observers, while TRV and TRV
give consistent results. Pathlines were transformed from the original reference frame via Eq. (1) with Q(t) = I and b(t) = (±0.9 t, 0)T to the near-steady
and oppositely-moving frame, respectively. The values of TRA, TRA, TRV, and TRV are mapped to both color and line radius.

and keeping (53), (54). This means that the trajectories yi

move on perfect circles around the origin. Applying TRV to
x1, x2, x3 gives

v =

(
0 −p− q

p+ q 0

)
x+ (1− p− q)

(
− sin(t)
cos(t)

)
(60)

and therefore s = 0 and trv is undefined. In this example,
stability drops to zero everywhere, making it impossible to
compute trv because S does not have distinct eigenvectors.
This corresponds to intuition: if yi move on perfect circles,
one cannot distinguish between particle motion and circular
motion of the reference frame, making it impossible to compute
rotation in an objective way for this example.

C. Cylinder flow

We apply our approach to the numerically simulated CYLIN-
DER data set, which was simulated using Gerris flow solver [35]
and was published by Günther et al. [14]. Such a data set is not
the main target of our approach because the underlying velocity
field is available here. We use it as a test data set since we can
compute an arbitrary number of trajectories and can compare
measures based on them with ”ground truth” measures from
the underlying velocity field.

Figure 3 shows trajectory measures for rotating behavior
from 500 randomly seeded trajectories (pathlines) observed in
three different reference systems: a system moving with the
approximate speed of the vortices (left column), the original

Fig. 4. To protect TRV and TRV from numerical issues, we introduced the
stability s(t). Here, a normalized stability sn(t) :=

s(t)∫ tN
t0

s(τ)dτ
· (tN − t0)

is shown for all trajectories in the CYLINDER flow. If the stability is constant
along the trajectory for all t ∈ [t0, tN ] then sn is equal to 1.

references system (middle column), and a system moving
in the opposite direction (right column). For reference, we
color code the vorticity magnitude of the underlying velocity
field in the first time slice, giving a reliable indicator where
to expect rotation behavior. Figure 3 illustrates again that
TRA and TRA are not objective: corresponding trajectories
for different observation frames (columns in Figure 3) have
different colors. For TRV and TRV, we observe the same
colors for different frames, confirming objectivity. We also
note that TRV and TRV tend to have high values in regions of
high vorticity magnitude, confirming the detection of rotation
trajectory behavior. Figure 4 shows that the stability s drops
only at a few locations to a small number. In this example, the
smallest stability s(t) was 2.2 · 10−5 and 0.02% of all vertices
exhibited a stability below 10−4.
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Fig. 5. On the left, input trajectories of drifting buoys in the Atlantic are
shown, along with a schematic depiction of the thermohaline currents in the
North Atlantic Ocean. Red arrows denote the generalized paths of warm, salty
surface water, notably the North Atlantic Gyre, feeding the North Atlantic
Current, which eventually cool off enough to form the North Atlantic Deep
Water (blue). On the right, our new trajectory vortex measure TRV is visualized
for m = 4. It reveals the Greenland Current, a cold stream carrying melt
water from the Arctic southwards through a region of strong vorticity, through
rotational particle behavior. The TRV value is mapped to color and line radius.

D. Ocean drifter trajectories

One instrument for measuring oceanic flow is drifting buoys,
which get released into the ocean and are tracked by satellites.
The result is a time series per buoy encompassing their position,
speed, and potentially other measurements from equipment
attached to the drifters. More than a thousand such drifters are
currently deployed by the National Oceanic and Atmospheric
Administration (NOAA) of the USA, with tracking data freely
available [30]. Drifter trajectories have often been employed
to track mesoscale eddies, from simple geometric methods
identifying ”loopers” [39] to techniques relying on statistical
[51] or oscillatory [28] analyses. While not objective, these
methods work well due to their use of geophysical properties.

We applied our TRV measure with (49) and 3 nearest
neighbors per curve on a subset of 126 drifters in the North
Atlantic ocean, tracked from Oct 2, 2019 to Sep 13, 2020. Our
method allows us to identify regions of highly vortical behavior
in an objective manner. The results are shown in Figure 5:
while both mesoscale eddies and oceanic gyres are structures
of interest to the oceanographic community and prevalent in
this region of the data [42], the sparsity of trajectories in these
regions does not allow their detection. Instead, strong rotational
behavior can be seen in and around the Greenland Current.
While not turbulent itself, the current is bounded by bands
of high absolute vorticity and is thus picked up as a feature
of interest by our measure. When combined with specialized
knowledge from the oceanographic community, we believe that
TRV can lead to further insight into oceanic eddy phenomena.

E. Midge trajectories

We analyze trajectories of tracked swarms of Chironomus
riparius. The data set is described and provided by Sinhuber
et al. [45]. Chironomus riparius are a midge species that
consistently and predictably forms mating swarms [8]. Males
are known to nucleate over visual features on the ground, such
as tree stumps or stream banks [8]. In the experiment, this
was simulated by adding ”swarm markers” to the setup. The
tracking was done by an optical 3-camera system at 100Hz.

0

5

Fig. 6. TRV calculated for two different seeding times in the measured MIDGE
data set. For this 3D data set, m is selected automatically in m ∈ {4, 6}
locally for each point within a time range of 3s using a prior curve smoothing
with λ = 10, see Eq. (61). The total number of input trajectories in the data
sets are 38 (left) and 56 (right).
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Fig. 7. Left: TRV on space-time tracks of PEDESTRIANS (starting from the
bottom) with automatic m selection in m ∈ {3, . . . 10}. Middle and right:
three closest trajectories (orange) of a selected trajectory (blue) on which the
TRV value was computed.

We apply TRV to further analyze the movement around
visual features. In particular, we analyze if a common objec-
tive rotation behavior can be observed. Figure 6 shows the
trajectories for two different seeding times. While the pure
shape of the trajectories does not reveal any patterns, we found
a few trajectories with high TRV values, mostly in the inner
parts of the data set. Our approach can confirm a swirling
behavior of a few trajectories, while the majority of the midges
do not exhibit objective rotation behavior.

F. Pedestrians

In an effort to study the walking patterns of pedestrians
during the COVID-19 pandemic, Echeverrı́a-Huarte et al. [11]
tracked the movement of 18 to 32 pedestrians in a confined
space. Test subjects were told to keep a minimum safety
distance to each other while walking at a constant speed
either randomly or intermittently towards the walls. Based on
their trajectories, they found a prevalence of counter-clockwise
vortical movement [12].

We applied TRV on one of these data sets and were able
to confirm the presence of objective vortical motion at least
by a few of the participants, shown both in Figure 7 and
the accompanying video. Figure 7 (left) shows TRV on the
trajectories, highlighting five trajectories with increased rotation
rate. Interestingly, these trajectories are not rotating around each
other. This can be seen in Figure 7 (middle and right), where
for a selected trajectory (blue) the three closest trajectories
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Fig. 8. Space-time tracks of PIGEONS (starting at the bottom) during pursuit
by a robot falcon. From left to right, variations of the time window are shown
over which TRV with m = 4 was calculated, namely 0.2s, 1s, 2s, 3s.

(orange) are shown that were used in the computation of
TRV. Overall, we can conclude that the counter-clockwise
rotational movement observed by the authors [12] depends
on the chosen constant reference frame and would mostly
disappear in our objectively chosen reference frame and is
therefore not objective.

G. Pigeon flock

As another example, we look into the flight paths of birds
evading a predator. In this data set, homing pigeons evade a
remotely controlled robotic peregrine falcon [41], [34]. Their
trajectories are tracked horizontally via GPS and sometimes
cut short by invalid position values received. We show the TRV
values computed on the 21st experimental run in Figure 8, with
a large flock of 34 birds fleeing from the predator. After being
released, the flock performs coordinated turns to escape.

To analyze the flocking behavior over time, we calculate
the TRV value for each time step separately, as discussed in
Section III. Varying the sampled time range highlights different
aspects of the data: When taking each data point by itself (left),
we can compare the rotational behavior of the birds along
their path. Immediately after their release from the cage, the
birds perform a collective turn to evade the robot falcon, while
assembling into a flock. This is highlighted by relatively high
TRV values during the first 5 seconds, where a lot of re-
ordering and thus rotation around each other occurs. At the
second evasive maneuver, we can observe that while performing
a much tighter loop the flock’s flight pattern is rather stable
and objective rotations occurs only sporadically and briefly,
even as the flock as a whole performs a turn. This matches
well with the findings in Sankey et al. [41] that show a high
level of alignment broken only when a predator comes close.
With an increased time range, the values are smoothed along
the lines. This highlights how most of the birds do not exhibit
any rotation relative to the flock, with three outliers highlighted
due to their high trajectory vorticity.

H. Boids simulation

At its basic level, the formation of these kinds of bird flocks
can be modelled by a simple set of rules observed by each
bird-oid individual, or boid [38]. Cohesion towards the center
of mass, alignment with neighboring boids and separation to
avoid collision can together closely mimic real-life swarms.
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Fig. 9. Space-time tracks (starting from the bottom) of the BOIDS simulation
for m = 5. During the initial chaotic phase, the agents rotate around each
other as they slowly form clusters (bottom right). After some time, the agents
arrange into larger flocks and stop rotating almost entirely (top right).

Rotation is not described directly by a rule of the system, but
its emergence can be observed in the vorticity of the resulting
paths. We recorded the trajectories of 100 boids from an open
source implementation [10]. The full space-time data is shown
in Figure 9 and the accompanying video. Starting from random
positions, TRV values are high everywhere while the agents’
movements appear chaotic. Clusters quickly form and the boids
begin to align, ceasing to rotate around each other. After some
time, only a few big swarms remain, with only the occasional
agent showing objective rotational behavior. In this example,
motion is a superposition of multiple components (rotation,
separation, chaotic motion). Our rotation-only measure is able
to detect behavioral differences.

V. DISCUSSION AND LIMITATIONS

Since the input to TRV and TRV is a finite (low) number
of trajectories, the quality of the results depends on the input
trajectories. A phenomenon can only be observed when a
sufficient number of trajectories participate in it and are
considered neighbors. We analyze how the results depend
on their density, and how TRV and TRV behave if the input is
too large (i.e., trajectories far away from each other, showing
a different behavior driven by different phenomena). We do
the analysis on the cylinder data set where an underlying
velocity field as ”ground truth” is available. Figure 10 shows
the result for different amounts of input trajectories (rows) and
different sample sizes (columns). For a low number of input
trajectories, sampling many lines tends to include more lines
from different regions. This results in fewer high TRV values
(Figure 10 upper right). This confirms a desired behavior: too
large inputs with more than one dominant motion lead to low
TRV values as the dominant motion within a larger region is
evaluated instead of smaller-scale phenomena. On the other
hand, a larger number of input trajectories (lower row) gives a
more stable estimation of the rotating motion. This choice of
k, i.e., the number of neighbors sampled, is thus dependent on
both the data and scale of the feature in question and should
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Fig. 10. Parameter studies for the number of input trajectories (rows) and the number of neighboring lines used for fitting H (columns), here for TRV. For a
low number of input trajectories (top row), adding too many neighbors includes lines that might not be part of a vortex. For a large number of input trajectories
(bottom row), more neighboring lines result in a more stable estimation of rotating motion. Note that with increasing number of input trajectories, vortices are
estimated more accurately, as the continuous field is sampled more densely. For reference, the vorticity of the underlying field is shown in grayscale for the
bottom slice.



12

0.1

0.15

Fig. 11. Before computing line derivatives numerically, we apply a linear smoothing according to Eq. (61), for which different smoothing weights are
demonstrated here, from left to right: λ = 1, λ = 2, λ = 3. Increasing the smoothing weights results in smoother line geometry. The TRV observations,
however, remain consistent for different parameter choices.

Data set dist. (ms) TRV (ms) lines vertices fit
DRIFTER 26.41 161.98 203 125,472 4
MIDGE 0.17 8.81 38 1,558 3
MIDGE 0.36 15.19 56 2,728 3

CYLINDER 25.93 162.54 500 115,241 5
CYLINDER 25.99 184.01 500 112,014 10
CYLINDER 27.49 229.90 500 109,815 15
CYLINDER 354.35 482.14 2,000 471,906 5
CYLINDER 357.94 571.12 2,000 462,457 10
CYLINDER 360.12 758.48 2,000 455,018 15
CYLINDER 1,945.26 1,204.98 5,000 1,199,686 5
CYLINDER 1,930.10 1,440.55 5,000 1,183,928 10
CYLINDER 1,933.80 1,948.60 5,000 1,171,023 15
PEDESTR. 3.60 49.52 18 2,214 3-10

PIGEON 0.2S 500.83 220.51 34 3,498 4
PIGEON 1.0S 1,758.03 922.35 34 3,498 4
PIGEON 2.0S 3,148.76 2,395.13 34 3,498 4
PIGEON 3.0S 3,186.95 2,834.82 34 3,498 4

BOIDS 1.08 · 106 100,440 100 100,000 5
TABLE II

RUN-TIME MEASUREMENTS FOR THE COMPUTATION OF DISTANCES (IN
MILLISEC.), THE TRV COMPUTATION (IN MILLISEC.), THE NUMBER OF

TRAJECTORIES, THE TOTAL NUMBER OF VERTICES IN THE SET, AND THE
NUMBER OF NEIGHBORING LINES USED (OR CONSIDERED) FOR THE FIT.

ultimately be steerable by the user. Further, TRV needs to
be shown on multiple trajectories to detect the extent of the
coherently rotating region. Since the data sets covered different
phenomena, we did not attempt normalization of the TRV value
range. This might be a worthwhile direction to investigate when
studying rotating motion of the same phenomenon, for example
to compare simulations with experimental measurements.

Table II lists performance measurements for all considered
data sets, computed on an Intel Core i9-10980XE CPU with
3.00 GHz. For the real-world data, computations were in the
order of milliseconds, while the largest test sets took in total
about 4 or 6 seconds, respectively, to compute TRV for all
trajectories. The BOIDS simulation took the longest, due to the
temporally localized computation of TRV for each vertex. In
the non-localized implementation, we compute the full distance
matrix between all trajectories first. Afterwards, the distance
matrix is reused when finding the k-nearest trajectories for
each of the curves, by iterating the corresponding row in the
distance matrix and collecting the k smallest items in a max
heap. To calculate the tangents and accelerations numerically,
we use a sixth-order accurate finite-difference scheme [13].

TRV indicates a common rotational movement of moving
objects. TRV, however, is unable to show why this behavior is
present. Rotation can have various reasons, depending on the
application. If e.g. the trajectories are mass-less particles in a

flow, they follow the underlying Navier-Stokes equations, and
rotational behavior indicates a vortical region. For other kinds
of trajectories (e.g., swarms of birds), the emergence of vortical
behavior is often observed and confirmed by simulations, but
there are still ongoing debates about its cause [12], [44], [34].

A. Continuity of the trajectories

The computation of TRV requires (at least piecewise) C2

trajectories. While this is in general a safe model assumption
(for example, a flow fulfilling the Navier-Stokes equation is
assumed to be C∞ continuous), it may create numerical issues
in the discretization: second derivatives of trajectories are
usually estimated from sampling points on the trajectories,
resulting in a dependency of the results from the sampling
quality/density. A common approach to get reliable derivatives
is smoothing, for which we employed a linear optimization
that minimizes the following quadratic energy:

argminx̃

∫ tN

t0

1

2
∥x̃− x∥2 + λ

2
∥ ˙̃x∥2 dt (61)

We have analyzed the quality of TRV for various smoothing
weights λ in Fig. 11.

VI. CONCLUSION

We have introduced Trajectory Vorticity (TRV), the – to
the best of our knowledge – first approach to analyze rotation
behavior based on only few trajectories in an objective way. We
proved objectivity of TRV and showed that TRV can be carried
over from two independent established objectivization methods
for velocity field data. Our algorithm was demonstrated on a
wide range of data sets, encompassing measured, simulated
and integrated trajectories.

VII. SUPPLEMENTARY MATERIAL

The accompanying Maple sheet contains the Maple proof
that Eqs. (38), (26), and (46) are equivalent. Further, it contains
a Maple proof that the 3 trajectories in (53), (54) have a closed-
form solution for trv written in (55).
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