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Fig. 1. Results of variational feature extraction for common feature curves and surfaces in scalar fields, vector fields, and tensor fields, including ridge surfaces,
vortex corelines, atmospheric jet streams, paths of vortex and bifurcation lines, tensor corelines, isocontours, and paths of ocean eddies.

Across many scientific disciplines, the pursuit of even higher grid resolu-
tions leads to a severe scalability problem in scientific computing. Feature
extraction is a commonly chosen approach to reduce the amount of infor-
mation from dense fields down to geometric primitives that further enable a
quantitative analysis. Examples of common features are isolines, extremal
lines, or vortex corelines. Due to the rising complexity of the observed phe-
nomena, or in the event of discretization issues with the data, a straightfor-
ward application of textbook feature definitions is unfortunately insufficient.
Thus, feature extraction from spatial data often requires substantial pre-
or post-processing to either clean up the results or to include additional
domain knowledge about the feature in question. Such a separate pre- or
post-processing of features not only leads to suboptimal and incomparable
solutions, it also results in many specialized feature extraction algorithms
arising in the different application domains. In this paper, we establish a
mathematical language that not only encompasses commonly used feature
definitions, it also provides a set of regularizers that can be applied across
the bounds of individual application domains. By using the language of vari-
ational calculus, we treat features as variational minimizers, which can be
combined and regularized as needed. Our formulation not only encompasses
existing feature definitions as special case, it also opens the path to novel
feature definitions. This work lays the foundations for many new research
directions regarding formal definitions, data representations, and numerical
extraction algorithms.
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1 INTRODUCTION
In many scientific disciplines, dynamical systems such as the evolu-
tion of the atmosphere or the blood flow in our veins, are described
by spatio-temporal fields, i.e., spatially and temporally varying func-
tions, such as temperature, pressure, wind velocity, etc. Due to the
increasing availability of computational resources, and the ambition
to resolve ever more detail, the grid resolutions and time scales are
rapidly increasing, which entails a serious scalability problem. To
meet this challenge, a data reduction is vitally needed. A common
approach is the extraction of so-called features [Post et al. 2003],
which are structures of interest that are needed for a particular data
analysis. Most contemporary feature definitions in scalar, vector,
and tensor fields are criteria that can be evaluated locally, i.e., we can
test for a given point if it is part of a feature. Examples are extremal
lines and surfaces, vortex corelines, isocontours, parallel vector lines,
or critical lines to name a few. Depending on the amount of noise
in the data and the quality of derivative estimations, these feature
lines (or surfaces) are often pre- or post-processed to become more
smooth, to align with a vector field, or to be close to a structure of in-
terest. Usually, feature extraction and clean-up are done separately,
for example by smoothing the input fields before feature extraction,
or by smoothing the resulting line or surface geometry afterwards.
In this paper, we aim for a more rigorous definition of features, in
which the regularization is directly built into the feature definition.
For this, we need a conceptually different approach. Finding the
optimal feature that not only meets the feature definition, but also
meets all the regularizations as best as possible, leads to an energy
minimization approach that seeks for an optimal curve (or surface)
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Fig. 2. Vortex coreline extraction from vector fields is numerically challenging, due to its dependence on derivative estimations. In the left image, a conventional
vortex coreline extraction technique is shown, namely the reduced velocity criterion of Sujudi and Haimes [1995], which is computed by a Newton-Raphson
based parallel vector solver [Peikert and Roth 1999]. The result is known to be spurious [Günther and Theisel 2018] and is cleaned up in the middle image by
only showing the largest connected curve. In this flow over a delta wing, the discretization of the piece-wise linear vector field is too coarse in the wake of the
vortex, which results in bumpy feature curves. With our variational formulation in the right image, the feature definition is complemented with a smoothness
regularization using a suitably chosen regularization weight. Different parameter choices and the advantages/disadvantages are discussed later in Section 7.1.

among many possible curves (or surfaces). In this paper, we phrase
the most-frequently used feature definitions and regularizations in
the language of variational calculus. Using the Euler-Lagrange equa-
tions, we derive ODEs and PDEs, which are the building blocks for
the necessary conditions that need to hold for an energy minimum.
All derivations are done in a continuous formulation, which makes
the (regularized) feature definition independent of the underlying
discretization of both the data and the feature curve or surface. We
demonstrate how the ODEs and PDEs can be discretized and propose
a numerical algorithm to solve for a given initial condition and/or
boundary condition. We apply the approach to feature extraction in
several scientific disciplines, including aerodynamics, geophysics,
atmospheric sciences, wind engineering, fluid dynamics, oceanogra-
phy, and Morse theory. Results of our method are shown in Fig. 1
for the various disciplines and Fig. 2 demonstrates the benefits of
combining the feature definition with a regularizer at the example
of vortex corelines above the leading edge of a delta wing surface.
In summary, we make the following contributions. We provide:

• a general mathematical formulation of the most commonly
used feature definitions as variational energy minimizers,

• a continuous necessary condition for each feature and regu-
larizer that the optimal geometry must fulfill,

• a numerical extraction algorithm that extracts optimal lines
and surfaces iteratively from initial conditions.

The variational formulation opens many possible research direc-
tions for future work, including further formal feature definitions,
discretization schemes, numerical extraction algorithms, and more
applications in practice. The approach is not free of parameters,
and thus more research on energy weight exploration, and suitable
seeding can follow in the future, as well.

Notation. Throughout this paper, we utilize the following nota-
tion. Scalar-valued quantities are denoted by lowercase italic letters,
such as 𝑠 . Bold letters denote column-vectors, such as v. The symbol

∇ refers to the nabla operator, which computes the vector of par-
tial derivatives. Note that our Jacobian matrices contain the partial
derivatives in the columns. Functions receive their arguments in
round brackets (. . . ), while functionals (i.e., ’functions’ that receive
other functions as input) specify their arguments in square brackets
[. . . ]. The symbol 𝜕 denotes the partial derivative, while 𝛿 denotes
a functional derivative.

2 RELATED WORK
In the following section, we give an overview of conventional and
variational feature extraction methods. Afterwards, we briefly sum-
marize the foundations of variational calculus.

2.1 Conventional Feature Extraction
In scientific visualization, commonly-used feature definitions can
be categorized into extremal features and iso features.

2.1.1 Extremal Features. An extremal feature is a geometric struc-
ture along which a scalar value is sectionally minimized or maxi-
mized. For a formal definition, consider an𝑚-dimensional steady
scalar field 𝑠 (y) : R𝑚 → R, with the𝑚×𝑚Hessianmatrix∇(∇𝑠 (x)) :
R𝑚 → R𝑚×𝑚 , which has eigenvectors c𝑖 (y) and eigenvalues 𝜆𝑖 (y)
for 𝑖 ∈ {1, . . . ,𝑚}, i.e., ∇(∇𝑠 (x)) c𝑖 (y) = 𝜆𝑖 (y) c𝑖 (y). The eigenval-
ues are sorted in ascending order 𝜆1 ≤ · · · ≤ 𝜆𝑚 . A 𝑘-dimensional
ridge structure is assembled by all locations at which the gradient
is orthogonal to the𝑚 − 𝑘 eigenvectors with smallest eigenvalues,
which are in addition required to be negative:

{y : ∇𝑠 (y)Tc𝑖 (y) = 0, 𝜆𝑖 (y) < 0, 1 ≤ 𝑖 ≤ 𝑚 − 𝑘}. (1)

A valley structure is the opposite and is found by extracting ridge
structures of the negated field −𝑠 (y). This definition includes the
widely used ridge line definition of Eberly [1996], which locates
points at which the eigenvector c𝑚 with largest eigenvalue 𝜆𝑚 is
parallel to the gradient∇𝑠 (y). Many application-specific feature defi-
nitions have been phrased, including ridge lines of region-based vor-
tex measures [Sahner et al. 2007], potential vorticity banners [Bader
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et al. 2020], and jet streams [Bösiger et al. 2022; Kern et al. 2018]. For
further discussions of ridges, we refer to Lindeberg [1998], Peikert
and Sadlo [2008], and the framework of Kindlmann et al. [2018].

2.1.2 Iso Features. Another common approach to describe geomet-
ric structures of significant relevance is to define them implicitly as
(intersections) of level sets in one or multiple scalar fields. Consider
a field v(y) : R𝑚 → R𝑑 , which maps an𝑚-dimensional point to a
𝑑-dimensional vector. Iso features are defined as locations at which
the function maps to a specific isovalue c0 ∈ R𝑑 :

{y : f (y) = c0} (2)

For scalar fields (𝑑 = 1), such features are called isocontours (or
level sets), which can be extracted with marching cubes [Lorensen
and Cline 1987], flying edges [Schroeder et al. 2015], or more re-
cent learning-based approach such as neural marching cubes [Chen
and Zhang 2021] that better reconstruct surface details. In time-
dependent 2-dimensional vector fields (𝑚 = 3, 𝑑 = 2), critical points
move over time along so-called critical lines [Weinkauf et al. 2007].
For bi-variate scalar fields in 3-dimensional space (𝑚 = 3, 𝑑 = 2),
the intersection of two isocontours is called a fiber, which sweeps
out fiber surfaces [Carr et al. 2015] when varying the isovalues.

2.1.3 Parallel Vectors. An important instance of an iso feature is
the solution to the parallel vectors operator [Peikert and Roth 1999].
Given the 3-dimensional steady vector fields v1 (y), v2 (y) : R3 →
R3, the parallel vectors operator returns the set of all locations at
which the two vector fields are parallel:

{y : v1 (y) ∥ v2 (y)}, (3)

which generally assembles line structures. Two vector fields are
parallel if their cross product vanishes, which makes this an iso
feature. In steady flow, the operator can be used to extract vortex
corelines using the reduced velocity criterion [Sujudi and Haimes
1995]. This concept has been extended to time-dependent flows in
multiple ways [Fuchs et al. 2008; Weinkauf et al. 2007] and was gen-
eralized to model bent curves [Roth and Peikert 1998], see Günther
and Theisel [2018] for a discussion. An objective vortex coreline
extraction is achieved when performing an unsteadiness minimiza-
tion of the reference frame beforehand [Baeza Rojo and Günther
2019; Günther et al. 2017; Hadwiger et al. 2019; Rautek et al. 2020,
2024; Theisel et al. 2021; Zhang et al. 2021]. Closely related to vortex
corelines is the concept of bifurcation lines [Perry and Chong 1987;
Roth 2000], which was later extended by Machado et al. [2013] in 3D
and in 2D space-time [Machado et al. 2016]. The detection of saddle-
like behavior in time-dependent vector fields has seen considerable
attention. We refer to Bujack [2022]; Hofmann and Sadlo [2020] for
a recent discussion of distinguished hyperbolic trajectories. The nu-
merically stable extraction of the parallel vectors operator has been
subject to much research [Guo and Peterka 2021; Ju et al. 2014; Pagot
et al. 2011; Van Gelder and Pang 2009; Weinkauf et al. 2010]. The
operator itself has been extended to higher dimensions [Hofmann
and Sadlo 2019] and to the parallel eigenvectors problem [Oster et al.
2018b], which had applications in tensor fields [Oster et al. 2018a].

2.2 Variational Feature Extraction
In the following, we visit past feature definitions that were founded
on variational principles.

2.2.1 Ridge Lines and Vortex Cores. Quapp and Schmidt [2011]
defined reaction paths as shortest paths along which the gradient
norm of a scalar is minimized. This definition collapses a feature to
a point. Thus, they carefully fixed the end points to a saddle and a
minimum to obtain a curve. Instead, we apply an established feature
definition that is minimized along ridge lines. Finn and Boghosian
[2006] defined a vortex coreline as a tangent curve in the vorticity
field along which vorticity is maximized. They required a smooth-
ness term to reach stability since their definition had undesirable
degrees of freedom, leading to what they referred to as accordion
folding. Our vortex coreline definition is consistent with established
definitions and does not require regularizations to work.

2.2.2 Lagrangian Coherent Structures. In flow visualization, La-
grangian coherent structures (LCS) are material lines and surfaces
that separate the flow into regions of coherent motion. They are
categorized into parabolic (jets), elliptic (vortex boundaries), and
hyperbolic (transport barriers) LCS. Haller et al. [Farazmand and
Haller 2012; Haller 2011; Oettinger et al. 2016; Oettinger and Haller
2016] introduced a variational formulation for all three types of
features. Since we add regularizers to our features, we cannot fol-
low their approach of using Noether’s theorem to derive a feature
extraction. Instead, we derive a general iterative feature extraction
algorithm for our feature definitions.

2.2.3 Flow Representations. Weißmann et al. [2014] represented
the vorticity field of a given vector field by means of a set of vortex
filaments with a given filament strength. For this, a complex-valued
field is searched in which the filaments arise as zero level set, i.e.,
as curves along which the real part and the imaginary part vanish
to zero. Such an implicit representation leads to closed loops. In
contrast, we will represent feature curves explicitly, which can rep-
resent non-closed structures. Chern et al. [2017] presented spherical
Clebsch maps to represent/approximate the fluid state of vector
fields using a set of fields, for which a Dirichlet type of energy is
minimized. The map is used for flow processing, vortex tube visual-
ization using isocontours, and it delivers initial conditions for the
Schrödinger’s smoke fluid solver [Chern et al. 2016].

2.3 Variational Calculus Review
Fermat’s theorem in differential calculus provides the means to
find a point that minimizes (or maximizes) a target function. In a
similar way, variational calculus allows us to find functions that
minimize a target functional, i.e., a function that receives func-
tions as input [Gelfand and Fomin 1963]. Consider the functional
F [𝑓1, . . . , 𝑓𝑚], which receives𝑚 differentiable 𝑛-dimensional uni-
variate functions 𝑓𝑖 (𝑥1, . . . , 𝑥𝑛) for 𝑖 ∈ {1, . . . ,𝑚} as input and re-
turns a scalar that is computed as integral over the domain X:

F [𝑓1, . . . , 𝑓𝑚] =
∫
X
L

(
𝑥1, . . . , 𝑥𝑛, 𝑓1, . . . , 𝑓𝑚,

𝜕𝑓1
𝜕𝑥1

, . . . ,
𝜕𝑓𝑚

𝜕𝑥𝑛

)
dx,

(4)
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Fig. 3. Overview of the intended variational feature extraction pipeline from the eyes of a domain scientist. A domain scientist may select and combine feature
definitions and regularizations as desired by looking them up in our collection of definitions. For example, they might choose to compute vortex corelines that
are smoothed. For the chosen features and regularizers, the necessary condition can be read from this paper, which gives ODEs and PDEs that the optimal
feature must fulfill (Sections 4 and 5). Depending on the properties of the resulting necessary condition (e.g., is it a linear or non-linear equation), a suitable
numerical extraction algorithm can be chosen (Section 6).

where the functions 𝑓𝑖 (x) : X → R are defined on the domain
X ⊆ R𝑛 , with x = (𝑥1, . . . , 𝑥𝑛)T ∈ X. For notational convenience,
we later combine the 𝑚 scalar-valued functions into one vector-
valued function f (x) = (𝑓1 (x), . . . , 𝑓𝑚 (x))T : X→ R𝑚 and place its
first-order partial derivatives column-wise in the Jacobian matrix
∇f (x) ∈ R𝑚×𝑛 . Then, Eq. (4) can be rephrased more concisely:

F [f (x)] =
∫
X
L

(
x′, f (x′),∇f (x′)

)
dx′. (5)

The function L that is integrated over the domain is called the La-
grangian and measures what is to be minimized over the function
domain. The Lagrangian could be extended to include higher deriva-
tives, as well, but for the rest of the paper, we only need first-order
partials of the unknown functions.

Euler-Lagrange Equation. As a necessary condition, the scalar-
valued functions 𝑓𝑖 (𝑥1, ..., 𝑥𝑛) minimize Eq. (4) when their functional
derivatives 𝛿F

𝛿 𝑓𝑖
vanish, which are known as the Euler-Lagrange

equations. Their derivation is included in the supplemental material.
There is one equation for each function 𝑓𝑖 in 𝑖 ∈ {1, . . . ,𝑚}:

𝛿F
𝛿 𝑓𝑖

=
𝜕L
𝜕𝑓𝑖

−
𝑛∑︁
𝑗=1

𝜕

𝜕𝑥 𝑗

(
𝜕L
𝜕𝑓𝑖, 𝑗

)
= 0, (6)

with the short-hand notation 𝑓𝑖, 𝑗 :=
𝜕𝑓𝑖
𝜕𝑥 𝑗

. In the remainder of the

paper, we stack those derivatives into a row vector 𝛿F
𝛿f :

𝛿F [f (x)]
𝛿f (x) =

(
𝛿F [f (x)]
𝛿 𝑓1 (x)

, . . . ,
𝛿F [f (x)]
𝛿 𝑓𝑚 (x)

)
= 0. (7)

As sufficient condition, the functional F [f (x)] has a minimum if
the second functional derivatives are strongly positive. Depending
on the Lagrangian L, Eq. (7) typically results in a second-order dif-
ferential equation in f (y). This differential equation holds for every
point on every feature. To select a particular solution, appropriate
boundary conditions need to be set.

3 VARIATIONAL FEATURE EXTRACTION
In this paper, we lay the foundations for the consistent modeling of
features in the language of variational calculus. Thus, our goal is
to phrase many commonly-used features as minimizer of a specific
energy that can be subject to regularizations that model domain
knowledge. Figure 3 gives a conceptual overview of the intended
workflow. A domain scientist who works with spatio-temporal field

data, may select and combine feature definitions and regularizations
as desired. For each of the feature definitions and regularizations,
the necessary condition for the optimum, i.e., the Euler-Lagrange
equation of each term, can be looked up from this paper. Depending
on the properties of the resulting Euler-Lagrange equations, i.e.,
dependent on whether they are linear or non-linear, a suitable nu-
merical algorithm for the feature extraction is selected. To model
this, we need four ingredients, as introduced in the following.

Feature (i.e., the ’unknown’). We begin our formal description by
introducing the unknown in our optimization, i.e., a continuous
feature such as a curve or a surface. We formally describe a con-
tinuous feature as a parametric function f (x) : X → Y, where
the parameter-space coordinate x ∈ X ⊆ R𝑛 (for example the uv
coordinate on a surface) maps to the vertex positions in the spatial
domain Y ⊆ R𝑚 . We assume that f (x) is differentiable in X.

Lagrangian (i.e., the ’energy’). Each main type of feature comes
with a variational definition to which regularizers can be added.
Some regularizers are commonly applicable (such as smoothness),
while others may be tailored to model specific domain knowledge.
To model this formally, we split the Lagrangian L, i.e., our objective
function, into a feature termM and its regularization terms Γ𝑘 , each
with an energy weight 𝜆𝑘 that can be adjusted carefully:

L (x, f,∇f) = M (x, f,∇f) +
∑︁
𝑘

𝜆𝑘Γ𝑘 (x, f,∇f) . (8)

Euler-Lagrange Equation (i.e., the ’necessary condition’). The re-
sulting Euler-Lagrange equations in Eq. (7), which provide a neces-
sary condition for an optimal solution, are then likewise split:

𝛿F [f (x)]
𝛿f (x) =

𝛿M[f (x)]
𝛿f (x) +

∑︁
𝑘

𝜆𝑘
𝛿Γ𝑘 [f (x)]
𝛿f (x) = 0. (9)

Gradient Descent (i.e., the ’solver’). Our optimization requires an
initial guess f (0) (x) for the feature f (x), for which several options
are discussed later in Section 6.2. To improve the estimate of a
feature point that is not pinned by a boundary condition, we employ
a gradient descent using the functional derivative:

𝜕f (x)
𝜕𝑡

= − 𝛿F [f (x)]
𝛿f

T
≈ f (𝑛+1) (x) − f (𝑛) (x)

ℎ
. (10)
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Rearranging the finite difference for the next position f (𝑛+1) (x), we
obtain for the step size ℎ the following update rule:

f (𝑛+1) (x) ≈ f (𝑛) (x) − ℎ · 𝛿F [f (𝑛) (x)]
𝛿f

T
. (11)

In practice, stochastic optimizers, such as Adam [Kingma and Ba
2017], can be used to adjust the step size ℎ. In the following, we
derive the Euler-Lagrange equations for common feature definitions
and regularizers. Afterwards, we discuss the discretization and pro-
pose iterative numerical algorithms for estimating initial conditions
and for solving the equations.

4 FEATURE DEFINITIONS
In the following, we introduce the variational formulation of sev-
eral commonly-used feature definitions. We keep the descriptions
concise, such that users of the variational framework can simply
’lookup’ the needed definitions. Thus, we only list the formal input
fields, the Lagrangian that is minimized, and the corresponding
functional derivatives for each feature. For future users of the vari-
ational framework, it is of course important to understand how
those equations are derived, such that new feature definitions can
be introduced. For this reason, we present the full derivations of
every term in the supplemental material, where we continue to list
and demonstrate further feature definitions, as well.

4.1 Ridge Lines
Given is a three-dimensional scalar field 𝑠 (y) : Y → R with the
gradient vector ∇𝑠 (y) and the Hessian matrix H(y), which has at
each location y the real-valued, sorted eigenvalues 𝜆1 (y) ≤ 𝜆2 (y) ≤
𝜆3 (y) and the corresponding eigenvectors c1 (y), c2 (y), c3 (y), i.e.,
H(y)c𝑖 (y) = 𝜆𝑖 (y)c𝑖 (y) for all 𝑖 ∈ {1, 2, 3}. The ridge line criterion
of Eberly [1996] from Eq. (1) requires that the eigenvector c3, cor-
responding to the largest eigenvalue 𝜆3, is parallel to the gradient
∇𝑠 . Thus, the 1-dimensional ridge line f (𝑥) =

(
𝑓1 (𝑥), . . . , 𝑓3 (𝑥)

)T
minimizes the functional:

M𝑟𝑙 =
1
2
∥∇𝑠 (f (𝑥)) × c3 (f (𝑥))∥2 s.t. 𝜆2 (f (𝑥)) < 0, (12)

𝛿M𝑟𝑙

𝛿f (𝑥) = (∇𝑠 × c3)T ·
©«
( 𝜕∇𝑠
𝜕𝑓1

× c3 + ∇𝑠 × 𝜕c3
𝜕𝑓1

)T
.
.
.

( 𝜕∇𝑠
𝜕𝑓𝑚

× c3 + ∇𝑠 × 𝜕c3
𝜕𝑓𝑚

)T

ª®®®¬
T

. (13)

For notational convenience we dropped the dependencies, i.e., ∇𝑠 :=
∇𝑠 (f (𝑥)) and c3 := c3 (f (𝑥)). Valley lines of a scalar field 𝑠 (y) are
analogously found as ridge lines of the negated scalar field −𝑠 (y). In
a two-dimensional domain (𝑚 = 2), the parallel vectors may either
be lifted by appending a zero, or the ridge line may be searched as
locations where the dot product of the gradient and the eigenvector
with smallest eigenvalue vanishes. A vanishing dot product is also
the minimizer for ridge surfaces, as introduced next.

4.2 Ridge Surfaces
Given is a three-dimensional scalar field 𝑠 (y) : Y → R as in Sec-
tion 4.1. Following Eberly [1996], a ridge surface is characterized by
locations at which the eigenvector c1 (y) to the smallest eigenvalue

𝜆1 (y) is orthogonal to the gradient ∇𝑠 (y) and where the correspond-
ing eigenvalue is negative, i.e., 𝜆1 (y) < 0. The 2-dimensional ridge
surface f (𝑥1, 𝑥2) =

(
𝑓1 (𝑥1, 𝑥2), . . . , 𝑓3 (𝑥1, 𝑥2)

)T minimizes:

M𝑟𝑠 =
1
2

∇𝑠 (f (x))Tc1 (f (x))2 s.t. 𝜆1 (f (x)) < 0, (14)

𝛿M𝑟𝑠

𝛿f (x) =

(
∇𝑠Tc1

)
·
©«
𝜕∇𝑠
𝜕𝑓1

T
c1 + ∇𝑠T 𝜕c1

𝜕𝑓1
.
.
.

𝜕∇𝑠
𝜕𝑓𝑚

T
c1 + ∇𝑠T 𝜕c1

𝜕𝑓𝑚

ª®®®®¬
T

, (15)

where we dropped the dependencies for brevity, i.e., ∇𝑠 := ∇𝑠 (f (x))
and c := c1 (f (x)). Valley surfaces of a scalar field 𝑠 (y) are analo-
gously found as ridge surfaces of the negated scalar field −𝑠 (y).

4.3 Isocontours
In an 𝑚-dimensional steady scalar field 𝑠 (y) : R𝑚 → R, isocon-
tours are the union of locations y at which the scalar value 𝑠 (y)
is equal to a user-defined isovalue 𝑐0, cf. Eq. (2). In 2D domains,
isocontours are referred to as isolines. Analogously, they are called
isosurfaces in 3D. We refer to the 𝑛-dimensional isocontour as
f (x) =

(
𝑓1 (𝑥1, . . . , 𝑥𝑛), . . . , 𝑓𝑚 (𝑥1, . . . , 𝑥𝑛)

)T with 𝑛 =𝑚 − 1, which
minimizes for isovalue 𝑐0 the following Lagrangian, cf. Eq. (2):

M𝑖 =
1
2
∥𝑠 (f (x)) − 𝑐0∥2, (16)

𝛿M𝑖

𝛿f (x) = (𝑠 (f (x)) − 𝑐0) ·
𝜕𝑠 (f (x))
𝜕f (x) , (17)

with 𝜕𝑠 (f (x))
𝜕f (x) = ∇𝑠 (f (x))T. The term 𝛿M𝑖

𝛿f (x) is the corresponding
feature term in the Euler-Lagrange equation in Eq. (9). This describes
isolines for𝑚 = 2, 𝑛 = 1 and isosurfaces for𝑚 = 3, 𝑛 = 2.

4.4 Critical Lines
Locations at which a vector field vanishes to zero are called criti-
cal points [Helman and Hesselink 1989]. In a 2-dimensional time-
dependent vector field v(y, 𝑡) : R2 × R→ R2, critical points move
over time. Their path is called a critical line, which is assembled
by all points (y, 𝑡) at which the velocity vanishes, i.e., v(y, 𝑡) = 0.
The paths of critical points are a key ingredient in the extension of
classic steady vector field topology [Helman and Hesselink 1989,
1991] to the unsteady case [Bujack et al. 2020].

Given a 2-dimensional, time-dependent vector field v(y, 𝑡) : Y ×
R → R2 with v(y, 𝑡) = (𝑢 (𝑦1, 𝑦2, 𝑡), 𝑣 (𝑦1, 𝑦2, 𝑡))T a 1-dimensional
critical line in space-time f (𝑥) =

(
𝑓1 (𝑥), . . . , 𝑓3 (𝑥)

)T is characterized
by

M𝑐 =
1
2
∥v(f (𝑥))∥2, (18)

𝛿M𝑐

𝛿f (𝑥) = v(f (𝑥))T · 𝜕v(f (𝑥))
𝜕f (𝑥) , (19)

where 𝜕v(f (𝑥))
𝜕f (𝑥) = ∇v(f (𝑥)) is the space-time Jacobianmatrix at f (𝑥).

Note that the third dimension 𝑓3 (𝑥) denotes the time coordinate.

4.5 Parallel Vector Lines
The parallel vectors operator [Peikert and Roth 1999] locates curves
along which two vector fields are parallel, cf. Eq. (3). Given are two
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3-dimensional vector fields v1 (y), v2 (y) : Y→ R3, a 1-dimensional
parallel vectors solution

(
𝑓1 (𝑥), . . . , 𝑓3 (𝑥)

)T is defined by

M𝑝 =
1
2
∥v1 (f (𝑥)) × v2 (f (𝑥))∥2 , (20)

𝛿M𝑝

𝛿f (𝑥) = (v1 × v2)T ·
©«
( 𝜕v1
𝜕𝑓1

× v2 + v1 × 𝜕v2
𝜕𝑓1

)T
.
.
.

( 𝜕v1
𝜕𝑓𝑚

× v2 + v1 × 𝜕v2
𝜕𝑓𝑚

)T

ª®®®¬
T

, (21)

where we dropped the dependencies for brevity, i.e., v1 := v1 (f (x))
and v2 := v2 (f (x)). The operator is also used in the next section.

4.6 Vortex Corelines and Bifurcation Lines
In flow visualization, vortex corelines are lines around which par-
ticles are rotating. Given is a 3-dimensional steady vector field
v(y) : R3 → R3, with its Jacobian ∇v(y), which has three eigenvec-
tors c𝑖 (y) with corresponding eigenvalues 𝜆𝑖 (y), i.e., ∇v(y) c𝑖 (y) =
𝜆𝑖 (y) c𝑖 (y). In the presence of two complex eigenvalues (w.l.o.g. let
𝜆1 and 𝜆2 be complex-valued), Sujudi and Haimes [1995] character-
ized the vortex coreline as the curve formed by locations y at which
the flow vector v(y) points in direction of the eigenvector c3 (y)
with real eigenvalue 𝜆3 (y), which implies that v is an eigenvector
and hence v ∥ Jv.
Given a 3-dimensional steady vector field v(y) : Y → R3, 1-

dimensional vortex corelines (and bifurcation lines) are feature
curves

(
𝑓1 (𝑥), . . . , 𝑓3 (𝑥)

)T that minimize:

M𝑣 =
1
2
∥v(f (𝑥)) × (∇v(f (𝑥)))v(f (𝑥))∥2 , (22)

𝛿M𝑣

𝛿f (𝑥) = (v × (∇v)v)T (23)

·
©«
( 𝜕v
𝜕𝑓1

× ((∇v)v) + v × ( 𝜕∇v
𝜕𝑓1

v + (∇v) 𝜕v
𝜕𝑓1

))T
.
.
.

( 𝜕v
𝜕𝑓𝑚

× ((∇v)v) + v × ( 𝜕∇v
𝜕𝑓𝑚

v + (∇v) 𝜕v
𝜕𝑓𝑚

))T

ª®®®¬
T

. (24)

An eigenanalysis distinguishes between vortex corelines [Sujudi and
Haimes 1995] and bifurcation lines [Roth 2000]. For time-dependent
flow, it was proposed to subtract the feature flow field [Theisel
and Seidel 2003; Weinkauf et al. 2007] first for Galilean invariant
features, or to perform a reference frame optimization [Baeza Rojo
and Günther 2019; Günther et al. 2017; Hadwiger et al. 2019; Rautek
et al. 2020, 2024] first for objective features.

4.7 Parallel Eigenvector Lines
Similar to the parallel vectors operator of vector fields, the parallel
eigenvectors operator [Oster et al. 2018b] is used for the analy-
sis of tensor fields. Given the two three-dimensional tensor fields
S(y),T(y) : Y→ R3×3, the parallel eigenvectors operator searches
for locations y at which there exists a direction vector r ≠ 0 ∈ R3
for which holds:{

y : (∃r ∈ R3) [ r ∥ S(y)r ∥ T(y)r ∧ r ≠ 0 ]
}
. (25)

The vector r thereby becomes an eigenvector of both S and T. We in-
troduce a 6D feature f (𝑥) = (g(𝑥), r(𝑥)) where g(𝑥) is the unknown

position and r(𝑥) is the unknown direction:

M𝑝𝑒 =
1
2

(
∥S(g)r × r∥2 + ∥T(g)r × r∥2 + 1

2

(
∥r∥2 − 1

)2)
, (26)

𝛿F 𝑝𝑒

𝛿g(𝑥) = (S(g)r × r)T ·
(
𝜕S(y)
𝜕𝑓1

r × r, . . . , 𝜕S(y)
𝜕𝑓3

r × r
)

(27)

+ (T(g)r × r)T ·
(
𝜕T(y)
𝜕𝑓1

r × r, . . . , 𝜕T(y)
𝜕𝑓3

r × r
)

(28)

𝛿F 𝑝𝑒

𝛿r(𝑥) = (S(g)r × r)T ·
©«
(S(g)r × ê1 + S(g)ê1 × r)T
(S(g)r × ê2 + S(g)ê2 × r)T
(S(g)r × ê3 + S(g)ê3 × r)T

ª®®¬
T

(29)

+ (T(g)r × r)T ·
©«
(T(g)r × ê1 + T(g)ê1 × r)T
(T(g)r × ê2 + T(g)ê2 × r)T
(T(g)r × ê3 + T(g)ê3 × r)T

ª®®¬
T

(30)

+ rT (∥r∥2 − 1) . (31)

The third term in Eq. (26) prevents the direction r from vanishing to
zero. In the equations above, we removed the dependencies g := g(𝑥)
and r := r(𝑥) for brevity. The symbols ê1 = (1, 0, 0)T, ê2 = (0, 1, 0)T,
ê3 = (0, 0, 1)T represent the unit basis vectors.

5 REGULARIZERS
The feature definitions of the previous section can be complemented
with regularizers that allow for the modeling of additional domain
knowledge. Note that each of the feature definitions above can also
be added as regularizer, for example when looking for a compromise
between two feature definitions. We discuss such a setting later
when studying the extraction of atmospheric jet streams.

5.1 Proximity
If for each feature point f (x) a reference position c(x) : X → Y
is known that the feature should remain close to, the following
regularizer can be added with its functional derivative:

Γ𝑝 =
1
2
∥f (x) − c(x)∥2, 𝛿Γ𝑝

𝛿f
= (f (x) − c(x))T . (32)

This regularizer requires vertex correspondence between the feature
and the reference geometry by means of a parameterization.

5.2 Smoothness
For both feature curves and feature surfaces, a smooth solution is
obtained when minimizing the Dirichlet energy:

Γ𝑠 =
1
2
∥∇f (x)∥2, 𝛿Γ𝑠

𝛿f
= −∇2f (x)T . (33)

A gradient descent based minimization of the variational prob-
lem leads to the well-known Laplacian smoothing, which uses the
Laplace operator ∇2f (x).
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5.3 Flow Alignment

The tangent ∇f (𝑥) = df (𝑥)
d𝑥 of a feature curve (𝑛 = 1) can be aligned

with a vector field v(y) : Y→ R𝑚 by using the regularizer:

Γ𝑎 =
1
2
∥v(f (𝑥)) − ∇f (𝑥)∥2, (34)

𝛿Γ𝑎

𝛿f
= (v(f (𝑥)) − ∇f (𝑥))T · 𝜕v(f (𝑥))

𝜕f (𝑥) (35)

+
(
𝜕v(f (𝑥))
𝜕f (𝑥) ∇f (𝑥)

)T
− ∇2f (𝑥)T . (36)

This regularizer requests features to be flow-aligned, making them
behave like streamlines in steady flow or pathlines in unsteady flow.
As a hard constraint, the alignment can be requested with Neumann
boundary conditions ∇f (𝑥0) = v(f (𝑥0)), for example at 𝑥0 ∈ X.

6 NUMERICAL EXTRACTION
In our variational framework, we compute optimal feature curves
and surfaces by applying a gradient descent scheme, cf. Eq. (11). First,
we describe how the feature curves and surfaces are discretized and
how derivatives are estimated. Second, we discuss two methods for
the initialization of the gradient-based optimization. And third, we
propose a grow-refine algorithm, which is inspired from predictor-
corrector methods [Banks and Singer 1995]. The approach starts
from a single feature point and then incrementally grows the feature.
After each growing step, the current feature is iteratively refined to
keep a valid solution to the Euler-Lagrange equation. We provide a
demo implementation at https://github.com/fau-vc/vfe-demo.

6.1 Discretization
Up until here, our approach could be described without any men-
tioning of the underlying discretization, since all features and their
necessary conditions have been introduced in a continuous setting.
For a given choice of discretization, three operations need to be
defined: the evaluation of the function f (x) at a given location x, its
first derivative ∇f (x), and its second derivative ∇2f (x).

6.1.1 Curve Discretization. We discretize 1-dimensional curve fea-
tures (𝑛 = 1) as piece-wise linear polylines with uniform parame-
terization. The function value f (𝑥) is linearly interpolated from the
curve vertices, and the derivatives ∇f (𝑥) and ∇2f (𝑥) are estimated
with second-order accurate finite differences. Due to the uniform
parameterization, all three can be computed in constant time. For
non-uniform parameterizations, standard algorithms based on New-
ton interpolation [Fornberg 1988] would be available, too.

6.1.2 Surface Discretization. Wediscretize surfaces (𝑛 = 2) using tri-
angle meshes with piece-wise linear (barycentric) interpolation. At
triangle vertices f𝑖 , we calculate the derivatives using the commonly-
used cotangens formulas [Pinkall and Polthier 1993; Reuter et al.
2009], which iterate the vertices 𝑗 in the 1-ring N(𝑖) of vertex 𝑖:

∇f𝑖 ≈
1
2𝐴𝑖

∑︁
𝑗 ∈N(𝑖)

𝜔𝑖 𝑗 (f𝑖 − f𝑗 )2, ∇2f𝑖 ≈
1
𝐴𝑖

∑︁
𝑗 ∈N(𝑖)

𝜔𝑖 𝑗 (f𝑖 − f𝑗 ) (37)

with 𝜔𝑖 𝑗 = 1
2 (cot𝛼𝑖 𝑗 + cot 𝛽𝑖 𝑗 ) and 𝐴𝑖 being the Voronoi area of

vertex 𝑖 . In the two triangles that share the edge (𝑖, 𝑗), the angles 𝛼𝑖 𝑗
and 𝛽𝑖 𝑗 are measured on the corners opposite to the shared edge.

(a) March. squares (b) g+r w/ smoothing (c) g+r w/o smoothing

(d) refine, 𝜆𝑠 = 109 (e) refine, 𝜆𝑠 = 1012 (f) no feature term
1,500𝐾 4,000𝐾

Fig. 4. Isocontour extraction for isovalue 𝑇0 = 3,000𝐾 : (a) marching
squares [Lorensen and Cline 1987], (b) grow-and-refine (g+r) with too strong
smoothness regularization fails, (c) growth without smoothness regulariza-
tion succeeds. The second row shows subsequent refinement of (c) to obtain
a smooth curve: (d) and (e) contain a feature term, while in (f) there is no
feature term which lets the contour move incorrectly into the Earth core.

6.2 Initialization
The iterative gradient descent procedure in Eq. (11) requires an
initial guess f (0)

𝑖
for each vertex of the feature. In the following,

we discuss two alternative approaches at the example of isoline
extraction in Fig. 4, which shows (smoothed) isocontours of the
temperature field in an Earth mantle convection simulation. Both
of the approaches have certain advantages and disadvantages, and
hence there is an application-dependent trade-off to be made.

6.2.1 Start from Baseline. If an existing baseline algorithm delivers
results that are already close to the desired regularized feature, then
the result of the baseline algorithm is a suitable starting point. For
example, we could begin with the largest connected component of
the marching squares algorithm in Fig. 4a and apply a smoothness
regularization to it if we are looking for smooth boundaries of hot
plumes. The benefit of this approach is that no feature is missed that
the baseline approach would have been able to find. The approach,
however, is not applicable if the desired feature is far from the
output of a simple baseline algorithm. This occurs when the feature
is a mixture of multiple competing constraints. Further, starting
from an already formed initial feature curve or surface complicates
the adaption of the topology during the optimization, since our
ideal feature might require splitting and/or merging. And lastly, the
implementation of a baseline algorithm is required, which may be
complicated depending on the type of feature we are interested in.

6.2.2 Grow and Refine. Alternatively, one may also grow the fea-
ture from one single seed point in a predictor-corrector manner. In a
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Fig. 5. Schematic overview of our grow and refine feature extraction algorithm. To numerically extract curve and surface features, we alternate between
two steps: a growing step and a refinement step. For each feature, we keep an active front, which is moved forward in the prediction step. In case of surface
extraction, the front is subdivided when adjacent feature points move too far apart. Afterwards, the space between the previous front and the new front is
tessellated. In the subsequent refinement step, all feature points of the 𝑘 last fronts are iteratively updated by evaluating the functional derivative 𝛿F/𝛿f for
each feature point, and by applying a gradient descent step. Multiple refinement iterations are used until the feature converges. The feature is iteratively
grown and refined until it reaches the desired size, reaches a domain boundary, or forms a closed loop.

growth step, the feature is expanded, for example by adding points
in tangential direction at the feature boundary. In a subsequent
refinement step, the gradient descent of Eq. (11) is iterated until the
feature has converged. Alternating, the feature can then be grown
and refined further. A benefit of this approach is that the feature can
be grown from just a single point. The downside, however, is that too
strong regularizers during growth might prevent the feature from
fulfilling the feature term well. Consider, for example, the setting
in Fig. 4b, where the seed point is depicted by a black sphere. Here,
the smoothness regularization is so strong that the feature curve
is unable to stay close to the isocontour. If, however, the feature
curve is first grown with low regularization as in Fig. 4c, which
gives results equivalent to marching squares, then the smoothness
term can be increased afterwards, as shown in Figs. 4d-4e for dif-
ferent smoothness weights. This shows that regularizers have to
be applied with care. Not only can a too strong regularizer prevent
the extraction of the desired feature, a user may also be biased to
confirm their believes by steering the parameters to see the shape
they want to see. For this reason, it is valuable to explore the impact
of energy weight variations. Despite those limitations, this approach
has the advantage that it does not require the implementation of a
baseline algorithm to obtain an initial guess. When the parameters
are chosen carefully, it can extract features that are compromises of
multiple constraints. To demonstrate the benefit of having a feature
term, Fig. 4f shows post-smoothing without a feature term, which
has the curve shrink into the Earth’s core.

6.3 Grow and Refine
A schematic illustration of the grow and refine procedure is pre-
sented in Fig. 5 for both curves and surfaces. In the following, we
explain the individual steps in more detail.

6.3.1 Growing. When growing a feature, we keep track of an active
front of points, which is similar to stream surface computation
algorithms [Hultquist 1992; McLoughlin et al. 2010]. The placement
of seed points is application-dependent, for example local extrema
for an extremal line computation might be calculated to start the
variational extraction from local scalar field extrema. For both curve
and surface features, the growing procedure consists of three steps.

Predict. For each active point f (0)
𝑖

on the feature boundary, the
curve or surface is grown by predicting the next location f (0)

𝑖+1 :

f (0)
𝑖+1 ≈ f (0)

𝑖
+ ℎ ·

𝜕f (0)
𝑖

𝜕𝑥𝑛
. (38)

In principle, different direction choices for 𝜕f
(0)
𝑖

𝜕𝑥𝑛
are imaginable. We

chose to grow the features tangentially (for curve features), or or-
thogonal to both the active front and the surface normal (for surface
features). When tracking structures over time, such as critical points,
feature flow fields [Theisel et al. 2005; Theisel and Seidel 2003] can
be used to estimate the next feature point in space-time.

Adapt. For surface features, points on the active front might drift
apart, which requires adaptive refinement. If the distance between
two adjacent points exceeds a threshold, then the line segment is sub-
divided in themiddle into two segments. Such a front line refinement
is again similar to the computation of stream surfaces [McLoughlin
et al. 2010]. For line features, no front adaptation is needed, since
fronts contain only a single point. At present we assume that fea-
tures are manifold and differentiable. Modeling topological changes
(bifurcations and reconnections) could be desirable in the future,
depending on the feature type.

Tessellate. Lastly, in the free space between the previous active
front and the current active front, line segments (for curve features)
or triangles (for surface features) are formed by iterating both fronts
and by deciding the orientation of the next edge to insert by choosing
the edge with shortest length. This approach is a key ingredient in
the stream ribbon triangulation of Hultquist [1992].

Termination. The growing procedure is terminated when a maxi-
mum number of growing steps was performed, when the prediction
leaves the domain Y, when the feature forms a closed loop, or when
the additional constraints of the feature definition no longer hold,
see Section 4. For example, vortex corelines are terminated, when
the eigenvalues of the Jacobian matrix are no longer complex, i.e.,
when no swirling motion is present.
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6.3.2 Refinement. Similar to predictor-corrector methods [Banks
and Singer 1995], the prediction of the next feature point is not per-
fect and requires an iterative improvement. Thus, for each prediction
step a series of refinement steps follows.

Derivative. For a given feature point f𝑖 , the direction in which the
feature point should move is obtained from the functional derivative
of the feature 𝛿F

𝛿f , i.e., its Euler-Lagrange equation, cf. Eq. (6). The
computation of the change in the feature position is local and only
needs f𝑖 , ∇f𝑖 and ∇2f𝑖 , cf. Section 6.1.

Step. To improve the estimate of a feature point f𝑖 that is not
pinned by a boundary condition, we employ gradient descent using
the functional derivatives, see Eq. (11).

Termination. The refinement procedure is terminated when a
maximum number of iterations is reached or when the magnitude
of the functional derivative (i.e., the gradient of the optimization)
falls below a user-defined threshold.
Once the refinement is completed, the next active front can be

estimated in a growing step, which leads to an iterative alternation
between growing and refinement steps. A key difference to the
predictor-corrector method [Banks and Singer 1995] is that in our
formulation all vertices are able to refine their position in the refine-
ment step, since newly added feature points might require a change
in former feature points to meet for example smoothness regular-
ization conditions. The refinement of the entire feature, however,
entails an algorithmic problem due to quadratic time complexity:
The loop over all feature points after each single growth step is
quickly becoming too expensive when the number of feature points
increases. We accelerate this by only updating the last 𝑘 active
fronts, since we observed that a feature point is unlikely to move
later when regularizers have local support.

7 APPLICATIONS
Our approach is applicable in many scientific disciplines. In the
following, we describe how variational optimizations can be formu-
lated using examples from aerodynamics, geophysics, atmospheric
sciences, fluid dynamics, and oceanography. Further, we compare
with baseline approaches, analyze the impact of smoothness in the
grow-and-refine method, perform a parameter study, analyze the
minimization of individual energy terms, and conduct performance
measurements. In the additional material, we present further appli-
cations in wind engineering and Morse theory, we demonstrate a
multi-scale optimization to deal with noisy field data, we discuss
the seed dependence, and we examine the convergence behavior.

7.1 Aerodynamics
We begin with vortex coreline extraction in aerodynamics. When air
flows at a high angle of attack over the leading edge of a delta wing,
a vortex generates that is parallel to the leading edge, see Fig. 2.
The vortex remains nearly stationary above the wing and causes
an air flow pattern that lowers air pressure and thereby generates
so-called vortex lift. The numerical simulation that is available to
us resolves the domain using a tetrahedral grid, which is adaptively
subdivided. In the regime behind the delta wing, where the outflow
of the vortex is transported by the passing flow, the resolution is

lower than near the wing geometry. This difference in resolution
causes instabilities with conventional vortex coreline extraction
methods. By incorporating a smoothness regularization, we are able
to extract a smooth vortex coreline, minimizing:

Lvortex =
1
2
∥v(f (x)) × (∇v(f (x)))v(f (x))∥2︸                                        ︷︷                                        ︸

vortex coreline

+ 𝜆𝑠
2
∥∇f (x)∥2︸         ︷︷         ︸

smoothness

, (39)

where v(y) is a steady 3-dimensional vector field.We set the smooth-
ness weight to 𝜆𝑠 = 108 and used Adam (learning rate ℎ = 10−4)
starting from the parallel vectors solution. Note that the domain of
this data set is large, which entails the large energy weight. Weight
normalization is discussed later in Section 8.

Comparison with Parallel Vectors. In Fig. 2 (left), we show the
extraction result using the parallel vectors operator [Peikert and
Roth 1999], which notoriously leads to spurious results [Günther and
Theisel 2018]. In Fig. 2 (middle), the largest connected component is
shown, which removes the short line segments. However, the vortex
coreline remains noisy in the wake area, which is especially visible
in the close-up. By using our variational approach, we are able to
determine a smooth vortex coreline. The experiment is continued in
Fig. 6, where pre- and post-processing of a parallel vectors solution
are compared with our variational method. For all methods, close-
ups with different parameter choices are shown. Pre-processing
the input fields by applying Gaussian smoothing in Fig. 6(a) causes
strong artifacts where the vortex coreline is close to the leading edge
of the delta wing. Post-processing by Laplacian smoothing of the
parallel vectors curve in Fig. 6(b) pulls the curve away (b.3), which
is visible by the yellow curve shining through, especially where the
parallel vectors curve is bent. The variational method in Fig. 6(c),
on the other hand, obtains a smooth solution that remains close
to the parallel vectors curve, due to the combination of a feature
term with a smoothing term. In the close-ups, it can be seen that all
three methods require careful selection of the smoothing parameters.
With our approach, however, the resulting feature stays close to the
feature longer, due to the feature term (c.3).

7.2 Geophysics
Geophysical simulations of the Earth mantle model convection
processes of material over millions of years [Gülcher et al. 2021].
Rising from the core’s surface, which is at over 5,000𝐾 , there are
hot plumes that reach into the mantle. To locate plumes that rise
from the core, we extract isocontours using:

Lplume =
1
2
∥𝑇 (f (𝑥)) −𝑇0∥2︸                 ︷︷                 ︸

isocontour

+ 𝜆𝑠
2
∥∇f (𝑥)∥2︸         ︷︷         ︸

smoothness

, (40)

where𝑇 (y) is the temperature field and𝑇0 = 2,800𝐾 is the isovalue.

Impact of Smoothness on Growing. In Section 6.2, we discussed the
impact of the smoothing regularization on the ability of the grow
and refine procedure to stay close to the desired feature. We have
shown in Fig. 4 that a split into first tracing out the feature with low
smoothness regularization, followed by an increase of the smooth-
ness afterwards, made it possible to extract smooth isocontours.
Here, gradient descent (step size ℎ = 10−2) was used.
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(a) parallel vectors (pre-processing)
𝜎 = 2

(b) parallel vectors (post-processing)
𝜆𝑠 = 2 · 10−3

(c) variational (ours)
𝜆𝑠 = 5 · 105

(a.1)

𝜎 = 1

(a.2)

𝜎 = 2

(a.3)

𝜎 = 3

(b.1)

𝜆𝑠 = 2 · 10−4

(b.2)

𝜆𝑠 = 2 · 10−3

(b.3)

𝜆𝑠 = 2 · 10−2

(c.1)

𝜆𝑠 = 5 · 103

(c.2)

𝜆𝑠 = 5 · 105

(c.3)

𝜆𝑠 = 5 · 107

Fig. 6. Comparing three different strategies that lead to smoother vortex corelines. The top row shows the vortex coreline (blue) alongside the unsmoothed
parallel vectors solution (yellow). Below, the smoothness parameters were varied to show how this affects the noisy part of the extraction. From left to right,
we see a prior Gaussian smoothing of the input vector field, a Laplacian smoothing of the extract parallel vector curve, and our variational method, which
combines feature and regularizer. The latter results in smooth vortex corelines that remain close to the underlying parallel vectors solution.

seed from ( ) succeeds seed from ( ) succeeds seed from ( ) fails
1,500𝐾 4,000𝐾

Fig. 7. Study of seed point sensitivity during isocontour extraction in the
Earth mantle. From left to right, the seed point was moved further away
from the true isocontour. The used seed point is enlarged while the other
two seed points are shown to provide context.

Seed Point Sensitivity. In Fig. 7, we varied the seed point location
to examine the robustness. If the seed point is close enough to the
ground truth, the refinement pulls the seed onto the correct feature.
In the third image, the seed point is too far away, and hence half of
the feature curve is missed. This shows that seeding is important.

7.3 Atmospheric Sciences
In the atmospheric sciences, atmospheric jet streams are a highly
relevant feature curve [Bösiger et al. 2022; Koch et al. 2006; Manney
and Hegglin 2018], since their presence and geometric shape have a
significant influence on the mid-latitude weather evolution [Harnik
et al. 2016; Nielsen-Gammon 2001]. Knowledge about the geometric
shape of a jet is not only interesting for weather forecasters, who

are interested in the spread of jet streams across ensemble members,
but it is also interesting to study how the shape varies statistically
across climate simulation runs to assess the changes for future
climate scenarios. To open the path to a quantitative analysis of jets,
we numerically extract jets as minimizers of the following terms:

Ljet=
1
2
∥∇𝑠 (f (𝑥)) × c3 (f (𝑥))∥2︸                            ︷︷                            ︸

ridge line

+ 𝜆𝑠
2
∥∇f (𝑥)∥2︸         ︷︷         ︸

smoothness

+ 𝜆𝑖
2
∥𝑝 (f (𝑥)) ± 2∥2︸                 ︷︷                 ︸

tropopause proximity
(41)

where 𝑠 (y) is the wind magnitude of the air flow and 𝑝 (y) is the so-
called potential vorticity field [Bader et al. 2020]. We follow Bösiger
et al. [2022] and consider the tropopause as isocontourwith potential
vorticity value of +2 on the Northern hemisphere and a value of
−2 on the Southern hemisphere. In the literature, other thresholds
have been used, as well [Dameris 2015]. We used a gradient descent
(step size ℎ = 10−2) in the grow-and-refine method.

Comparison with other Methods. Fig. 8 compares jet extraction
results using a local ridge line extraction based on parallel vectors,
cf. Eq. (1), a parallel vectors formulation of the jet criterion of Kern
et al. [2018], and a recent predictor-corrector method [Bösiger et al.
2022] with our variational approach for 𝜆𝑠 = 103 and 𝜆𝑖 = 0.01. The
integration-based methods trace the jets from local wind extrema
that have a wind speed of at least 40𝑚𝑠−1 and that are found at an
altitude range between 150 and 400ℎ𝑃𝑎. Both local parallel vectors
approaches results in spurious curves, which is a common prob-
lem [Günther and Theisel 2018]. The predictor-corrector method
[Bösiger et al. 2022] achieves a smoothing effect by lowering the
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Fig. 8. Comparison with other jet stream extraction methods in a global
ERA5 reanalysis simulation [Hersbach et al. 2020] of the atmosphere on
Sep 2nd 2016, 23:00 UTC. To overcome spurious results and discretization
issues in the data, our variational approach combines three pieces of domain
knowledge to formalize the structure of interest as variational minimizer:
aim for high wind speed (using Eq. (13)), spatial smoothness (using Eq. (33))
and proximity to the tropopause (using Eq. (17)), shown as gray surface.

number of correction steps, which however, leads to feature curves
that are slightly off. Our variational method, on the other hand,
is able to compensate for those problems by modeling further do-
main knowledge, namely smoothness and a general proximity to the
tropopause, which is shown as isosurface. Compared to the parallel
vectors solutions, the variational approach results in a smaller set
of longer lines, which is more suitable for further processing. The

without smoothness with smoothness

Fig. 9. The top image shows a visualization of the vortex corelines (green)
and bifurcation lines (yellow) in the wake of the flow around a square
cylinder. In the background, the velocity field is shown in the optimized
reference frame using line integral convolution [Cabral and Leedom 1993].
Below, close-ups are shown for different smoothness weights (left: 𝜆𝑠 = 0,
right: 𝜆𝑠 = 10), demonstrating the utility of the smoothness regularizer.

method, however, requires careful adjustment of energy weights to
strike the right balance between the different energy terms. Devel-
oping tools that guide the users is an avenue for future work.

7.4 Fluid Dynamics
Vortex corelines and bifurcation lines are flow features that have
been studied extensively in the past. Given the time-dependent 3D
vector field v(y, 𝑡) of a von-Kármán vortex street [Camarri et al.
2005], we apply a reference frame optimization [Günther et al. 2017]
to subtract the transport direction of the flow features first. This
results in a reduced vector field w(y, 𝑡) that was used in the past
to extract vortex corelines and bifurcation lines [Baeza Rojo and
Günther 2019]. Our goal is to track the path of the feature curves
over time as a surface f (x) = (f (𝑥), 𝑡) in the space-time domain,
using the Lagrangian from Sections 4.6 and 5.2:

Ltrack =
1
2
∥w(f (x)) × (∇w(f (x)))w(f (x))∥2︸                                           ︷︷                                           ︸

parallel vectors

+ 𝜆𝑠
2
∥∇f (x)∥2︸         ︷︷         ︸

smoothness

(42)

The paths of the feature curves arise as space-time surfaces, which
are displayed in Fig. 9 (top). The green surfaces depict the paths of
vortex corelines, while the yellow surfaces show the paths of bifur-
cation lines. The surfaces were extracted using the Adam optimizer
(learning rate ℎ = 10−4) from a seed line (Sec. 6.2.2). The extrac-
tion was stopped after five steps in both forward and backward
time to avoid occlusions. Afterwards, the surfaces were optimized
(Sec. 6.2.1) using the same learning rate, adding the smoothness
regularizer (𝜆𝑜 = 10).

Smoothness Study. In Fig. 9 (bottom), the space-time track of a
vortex coreline is shown with and without smoothing weight (left:
𝜆𝑠 = 0, right: 𝜆𝑠 = 10). By increasing the smoothness regularization,
our approach is able to stabilize the feature tracks temporally. In
more turbulent flow, vortex breakdown occurs which requires the
handling of topological changes such as splits and merges.
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7.5 Oceanography
In oceanography, large-scale vortices, also referred to as ocean
eddies, are ecosystems that travel across the seas. In an AVISO
geostrophic velocity field [Abernathey and Haller 2018], we track
the vortex centers of ocean eddies as critical lines in 2D space-time
after a prior reference frame optimization [Baeza Rojo and Günther
2019]. With imperfect reference frame optimizations, the resulting
vortex corelines are not Lagrangian [Bujack et al. 2020], meaning
that they are not pathlines of the flow. Thus, to align vortex corelines
with pathlines, we add a flow alignment regularization in space-time.
Given the 2-dimensional unsteady vector field, v(y, 𝑡), we lift the
flow into space-time v(y) = (v(y, 𝑡), 1)T and denote the reference
frame optimized flow as w(y), in which the ambient transport of
features was subtracted. We then minimize:

Leddy =
1
2
∥w(f (𝑥))∥2︸           ︷︷           ︸
critical line

+ 𝜆𝑎
2
∥v(f (𝑥)) − ∇f (𝑥)∥2︸                        ︷︷                        ︸

flow alignment

. (43)

Again, a two-stage process was used to extract the feature lines.
First, the lines were extracted with 𝜆𝑎 = 0 using the grow and refine
algorithm. Next, the curves are refined using 𝜆𝑎 = {1, 2, 3, 4}. Both
steps used the Adam optimizer (learning rate: ℎ = 10−3).

Assessment of Alignment Quality. To assess the impact of the
flow alignment regularizer, we varied its weight in Fig. 10. At the
top, from left to right, the flow alignment weight is increased. The
color-coding shows qualitatively the trend that with growing regu-
larization weight, the feature curves better align with pathlines of
the flow. Below, we quantitatively show that the critical line term is
well minimized when the flow alignment term is turned off. With
increasing flow alignment term, two constraints compete and a
compromise between them is reached.

7.6 Extremal Surface
To demonstrate the extraction of a surface feature from an initial
guess, we created an extremal surface based on a torus, similar to
Kindlmann et al. [2018]. The two-dimensional extremal surface f (x)
is extracted by minimizing the squared norm of the dot product
between gradient ∇𝑠 and minor eigenvector c1, cf. Section 4.2:

Lridge =
1
2

∇𝑠 (f (x))Tc1 (f (x))2︸                          ︷︷                          ︸
ridge surface

. (44)

The scalar field 𝑠 (y) is based on the quartic implicit torus equation:

𝑡 (𝑥,𝑦, 𝑧; 𝑟, 𝑅) = (𝑥2 + 𝑦2 + 𝑧2 + 𝑅2 − 𝑟2)2 = 4𝑅2 (𝑥2 + 𝑦2) (45)

where 𝑟 is the minor (tube) radius of the torus, and 𝑅 = 3 is the
major radius. We spatially vary the tube radius using 𝑟 ′ = 1

2 +
1
2 cos(

5
2𝜙), where 𝜙 = atan2(𝑦, 𝑥). From this, we define a scalar

field 𝑠 (𝑥,𝑦, 𝑧) = exp
(
−𝑡 (𝑥,𝑦, 𝑧; 𝑟 ′, 𝑅)2 · 10−5

)
, which has a ridge

surface at the location of the spatially varied torus. We begin the
variational gradient descent (step size ℎ = 10−2) from an explicit
representation of a simple torus 𝑡 (𝑥,𝑦, 𝑧; 3/4, 𝑅). The initial guess
and the final converged result are shown in Fig. 11. A convergence
plot is shown in the additional material.
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Fig. 10. The top images show the results of the space-time vortex coreline
extraction in the AVISO ocean data set. The flow alignment weight 𝜆𝑎 is
gradually increased. Swirling pathlines are seeded around the base of the
coreline, showing the alignment of the cores with the flow. Additionally, the
current energy of the flow alignment term is color-coded on the extracted
lines (energy values scaled by 104). Non flow-aligned sections are visible
for 𝜆𝑎 = 0 by the red color which corresponds to sections where the vortex
coreline is not well-enough aligned with pathlines of the underlying flow.
The plots below show the effect of the increased alignment weight on the
alignment energy (left) and the critical line energy (right) quantitatively.

initial guess intermediate result converged result

Fig. 11. Here, we demonstrate the convergence of a simple torus shape onto
a torus with spatially varying tube radius. The surface arises as ridge surface
in an analytic scalar field. The convergence is shown by gradually increasing
the number of gradient descent steps. The images show the initialization,
an intermediate result (200 steps) and the converged result (1000 steps).

7.7 Tensor Corelines
Tensor fields arise in structural mechanics and fluid mechanics in
the form of stress and deformation tensors. In such fields, the behav-
ior of hyperstreamlines in the eigenvector field has been analyzed
by extracting feature curves. For a symmetric tensor field S(y) in
a three-dimensional domain y ∈ Y ⊆ R3, Oster et al. [2018a] in-
troduced the concept of tensor corelines. In analogy to the vortex
coreline criterion of Sujudi and Haimes [1995] for steady fluid flow,
tensor corelines are curves around which hyperstreamlines of the
eigenvector field are swirling. These feature curves are obtained
with the parallel eigenvectors operator of Section 4.7 when choosing
T(y) = ∇rS(y) to be the directional derivative of S(y) in direction r.
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Fig. 12. Tensor corelines (dark blue) are the center lines around which
streamlines of the major eigenvector field are swirling (light blue).

We determine such tensor corelines by minimizing:

Ltensor =
1
2

(
∥S(g)r × r∥2 + ∥T(g)r × r∥2 + 1

2

(
∥r∥2 − 1

)2)
︸                                                            ︷︷                                                            ︸

tensor coreline

. (46)

with T(y) = ∇rS(y) being the directional derivative of S(y) in
direction r. In Fig. 12, we apply our grow-and-refine method with
gradient descent (step sizeℎ = 1) to the analytic tensor field S(𝑥,𝑦, 𝑧),
which was provided by Oster et al. [2018a]:

S(𝑥,𝑦, 𝑧) = ©«
𝑦2 −𝑥𝑦 −𝑦
−𝑥𝑦 𝑥2 𝑥

−𝑦 𝑥 1

ª®¬ (47)

and which we visualized in the domain [−1, 1]2 × [−2, 2]. In this
example, a straight tensor coreline is present around which the
streamlines of the major eigenvector field (light blue) are swirling.
The sensitivity of the seed point is studied in the additional material.

7.8 Performance
The performance of the variational feature extraction for a particular
Lagrangian definition scales linearly in the number of optimization
iterations. When initializing from a baseline, the runtime also in-
creases linearly in the size of the input, while the grow-and-refine
approach scales with the number of seed points, front size (𝑘) and
the number of growing iterations. The extraction time is reported
in Table 1 along with the relevant scene parameters for all scenes
in the paper, as well as for those in the additional material. The
measurements have been taken on a workstation with an Intel
Core i9-10980XE CPU with 3.00 GHz. The measurements exclude
memory I/O traffic, i.e., the data is already in memory. The table
shows an increased runtime when comparing line-based extractions
and surface-based extractions due to an increased size of the input
(see Sec. 6.2.1). Differences between the two surface extractions
are explained by the number of optimization iterations, the type of
optimizer, and the definition of the Lagrangian. The extraction of
the extremal surface requires the computation of derivatives of the
Hessian matrix and derivatives of eigenvectors. This increases the
computation time compared to the fluid dynamics example, where
∇w(f (x)) was computed in a pre-processing step. Comparing the
different line extractions, a similar trend can be observed. Computa-
tionally intensive feature definitions such as ridge or valley lines
exhibit an increased runtime compared to less intensive definitions

such as critical lines or isocontours. For example, the extraction
of atmospheric jet streams took 3.76 minutes while the extraction
of isocontours in the geophysics data set took only 1.42 seconds.
Compared to marching squares (19 milliseconds), the variational
approach is slower but customizable. Compared to the input field
data, the added memory consumption of our approach is negligible,
since we only need to allocate advancing fronts, which are small sets
of points/lines. This is a benefit of explicit feature representations,
compared to implicit ones [Weißmann et al. 2014], in which features
are modeled as level set of an unknown field.

8 DISCUSSION
We proposed a number of variational feature definitions for scalar,
vector, and tensor field analysis. There are many opportunities for
future research, which we outline in the following.

Alternative Feature Definitions. In this paper, we proposed a first
variational formulation for common line and surface features in
scalar, vector, and tensor field analysis. We leave the exploration of
alternative formulations to future work. For example, other smooth-
ness norms are imaginable, ridge lines could be expressed via dot
products, and in the parallel eigenvectors operator the direction
could be defined in spherical coordinates. Further, an implicit for-
mulation similar to Weißmann et al. [2014] could be interesting,
when aiming for closed feature curves.

Alternative Feature Discretizations. We modeled the features ex-
clusively as piece-wise linear curves (polylines) or piece-wise linear
surfaces (triangle meshes). Likewise, it would be possible to gener-
alize this by modeling the curves and surfaces in a linear basis, such
as the Bézier Bernstein, monomial, Chebychev, or Fourier basis.

Local vs. Global Optimum. The Euler-Lagrange equation is a nec-
essary condition for all variational minimizers.When the underlying
scalar and vector fields are non-linear (which is usually the case on
real-world data), then there is no guarantee that a gradient descent
can find the best solution. Thus, the result will strongly depend on
the initial conditions. In the future, strategies could be developed to
choose better initial conditions, including data-driven approaches.

Adaptive Weighting. When attempting to extract closed feature
curves, it is counterproductive to begin with a too high smoothness
weight, since the feature curve will tend to become straight instead
of closed. In Fig. 4 (and Fig. 1 in the additional material), we first
grew the feature curve without smoothness regularization and then
increased the smoothness afterwards. Interactive tools for aiding
the user in adjusting weights during an optimization could be an
interesting avenue in the future.

Weight Normalization. The value range of the domain coordinates
Y can vary greatly across different data sets, which impacts the value
range of the functional derivatives. A normalization procedure that
makes the magnitude of regularization weights comparable across
scenes would be an interesting topic for future work.

Linear Solutions. If the discretized Euler-Lagrange equation is
linear in f𝑖 , we can solve for f𝑖 directly. Then, the unknowns are
placed in a vector F = (. . . , f𝑖 , . . . ) and a linear system of the form
A · F = B is solved with an appropriate linear solver. Such a setting
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Table 1. Specification of features, regularizations, and performance measurements for our test scenes. The columns list the number of domain dimensions𝑚,
the number of feature dimensions 𝑛, the number of active fronts per iteration 𝑘 , the number of growing steps, the number of variational gradient descent steps
(Eq. (11)), and the measured computation time. For baseline initialized optimization, 𝑘 is given as all to indicate that the whole feature was optimized at once.

Data set Figure Feature definition Regularization(s) 𝑚 𝑛 𝑘 #grow #gradient time
Aerodynamics Fig. 2 vortex core smoothness 3 1 all – 5,000 10.4 sec
Geophysics Fig. 4 isocontour smoothness 2 1 5 800 250 1.42 sec

Atmospheric sciences Fig. 8 ridge line smoothness, isocontour 3 1 3 250 100 3.76 min
Fluid Dynamics Fig. 9 parallel vectors smoothness 4 2 all – 500 32.6 sec
Oceanography Fig. 10 critical line flow alignment 3 1 all – 760 7.76 sec
Extremal surface Fig. 11 ridge surface none 3 2 all – 1,000 3.83 min
Tensor corelines Fig. 12 tensor coreline none 6 1 20 40 10,000 3.74 sec
Morse theory Fig. 1 (add. mat.) Jacobi set smoothness 2 1 2 80 1,000 2.98 sec

Wind engineering Fig. 2 (add. mat.) valley line orientation 2 1 all – 300 47.4 sec

linear optimization & gradient descent

initial value problem

Fig. 13. With a regular curve smoothing problem that only contains a
smoothness and a proximity term, the Euler-Lagrange equation turns into
a linear equation. Thus, both linear optimization and gradient descent give
the same result (blue curve, top). For initial value problems (orange curve,
bottom), however, the result strongly depends on the initial position and
velocity. The noisy input curve is shown in black.

is shown in Fig. 13 (top), where only a smoothness (Eq. (33)) and a
proximity regularizer (Eq. (32)) are used to smooth a curve (gray):

Lsmooth =
𝜆𝑠

2
∥∇f (𝑥)∥2︸         ︷︷         ︸

smoothness

+
𝜆𝑝

2
∥f (𝑥) − c(𝑥)∥2︸                 ︷︷                 ︸
proximity

. (48)

Linear approximations to non-linear problems could be used to
estimate initial conditions for the non-linear solvers.

Solve as Initial Value Problem. For feature curves (𝑛 = 1), the
Euler-Lagrange equation in Eq. (7) is a second-order ODE that can
be solved as initial value problem. Thus, by choosing a start point
and a start tangent, the entire feature curve can be traced out with
a numerical integrator of choice. Fig. 13 (bottom) gives an exam-
ple of a fourth-order Runge-Kutta integration when phrasing the
second-order ODE as set of two coupled first-order ODEs after
introducing an auxiliary velocity variable to render the system au-
tonomous, cf. [Günther and Theisel 2017]. Note, however, that the
result strongly depends on the chosen initial position and tangent.
The initial value problems could be considered further for deriving
more accurate growth steps.

Preconditioning. The Euler-Lagrange equations in Eq. (7) phrase a
root-finding problem. Thus, it would be natural to explore Newton
and quasi-Newton methods, such as L-BFGS, in order to accelerate
convergence and to pre-condition the descent in order to avoid
oscillations. It should be noted, however, that Newton methods

require a sufficient condition, since unlike the gradient descent,
which will always walk ’down’ towards a variational minimum, the
Newton approaches can converge to roots of any type.

Sufficient Condition. The Euler-Lagrange equation is a necessary
condition and holds for both functional minima and maxima. The
second variation is needed to distinguish the two. Since we used a
gradient descent, we converge to a minimal solution. If a Newton
method was used instead as mentioned above, the second variation
should be observed to exclude false positives.

GPU Acceleration. A GPU implementation of the gradient-based
optimization would be a natural next step to accelerate the compu-
tation in order to enable an interactive exploration of weights.

9 CONCLUSIONS
We established a common mathematical language to approach the
definition and extraction of feature curves and surfaces from scalar,
vector, and tensor fields. Using variational calculus, features can be
treated as unknown functions that minimize customizable energy
terms for which necessary conditions can be derived. The varia-
tional formulations allows combining features not only with each
other but also with regularizers that enable the incorporation of
valuable domain knowledge. This was previously not possible, due
to incompatible modelling. In the future, we expect more feature
definitions to be introduced in the variational formulation, further
numerical extraction algorithms will be developed, and other fea-
ture discretizations are imaginable. Our approach requires suitable
seed points, and the setting of energy weights is in the hands of the
user. Developing an interactive system that guides the user through
the feature extraction process is another direction for future work.
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